82 research outputs found

    Closed-loop control strategy with improved current for a flashing ratchet

    Full text link
    We show how to switch on and off the ratchet potential of a collective Brownian motor, depending only on the position of the particles, in order to attain a current higher than or at least equal to that induced by any periodic flashing. Maximization of instant velocity turns out to be the optimal protocol for one particle but is nevertheless defeated by a periodic switching when a sufficiently large ensemble of particles is considered. The protocol presented in this article, although not the optimal one, yields approximately the same current as the optimal protocol for one particle and as the optimal periodic switching for an infinite number of them.Comment: 4 pages, 4 figure

    Fluctuation theorem for black-body radiation

    Full text link
    The fluctuation theorem is verified for black-body radiation, provided the bunching of photons is taken into account appropriately.Comment: 4 pages, 3 figure

    Comment on "Generalized exclusion processes: Transport coefficients"

    Full text link
    In a recent paper Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment, we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in [Phys. Rev. Lett. 111, 110601 (2013)].Comment: (citation added, published version

    Diffusion of interacting particles in discrete geometries

    Full text link
    We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.Comment: 5 pages main text (3 figures); 9 pages supplemental material (2 figures). (minor changes, published version

    Adsorption and desorption in confined geometries: a discrete hopping model

    Full text link
    We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.Comment: Published in EPJ ST volume "Brownian Motion in Confined Geometries

    Fluctuation theorem for entropy production during effusion of a relativistic ideal gas

    Full text link
    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and anti-particle pair production and annihilation. In both cases, the fluctuation theorem is verified.Comment: 6 pages, no figure

    Models of granular ratchets

    Full text link
    We study a general model of granular Brownian ratchet consisting of an asymmetric object moving on a line and surrounded by a two-dimensional granular gas, which in turn is coupled to an external random driving force. We discuss the two resulting Boltzmann equations describing the gas and the object in the dilute limit and obtain a closed system for the first few moments of the system velocity distributions. Predictions for the net ratchet drift, the variance of its velocity fluctuations and the transition rates in the Markovian limit, are compared to numerical simulations and a fair agreement is observed.Comment: 15 pages, 4 figures, to be published on Journal of Statistical Mechanics: Theory and Experiment

    Diffusion of interacting particles in discrete geometries: equilibrium and dynamical properties

    Full text link
    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition state theory. Which expression should be used depends on the strength of the inter-particle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a one over length dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations, if the particles are not strongly interacting.Comment: (18 pages, 16 figures, published version
    corecore