7 research outputs found
Targeted projection NMR spectroscopy for unambiguous metabolic profiling of complex mixtures
Unambiguous identification of individual metabolites present in complex mixtures such as biofluids constitutes a crucial prerequisite for quantitative metabolomics, toward better understanding of biochemical processes in living systems. Increasing the dimensionality of a given NMR correlation experiment is the natural solution for resolving spectral overlap. However, in the context of metabolites, natural abundance acquisition of (1)H and (13)C NMR data virtually excludes the use of higher dimensional NMR experiments (3D, 4D, etc.) that would require unrealistically long acquisition times. Here, we introduce projection NMR techniques for studies of complex mixtures, and we show how discrete sets of projection spectra from higher dimensional NMR experiments are obtained in a reasonable time frame, in order to capture essential information necessary to resolve assignment ambiguities caused by signal overlap in conventional 2D NMR spectra. We determine optimal projection angles where given metabolite resonances will have the least overlap, to obtain distinct metabolite assignment in complex mixtures. The method is demonstrated for a model mixture composition made of ornithine, putrescine and arginine for which acquisition of a single 2D projection of a 3D (1)H-(13)C TOCSY-HSQC spectrum allows to disentangle the metabolite signals and to access to complete profiling of this model mixture in the targeted 2D projection plane. Copyright (C) 2010 John Wiley & Sons, Ltd
Broad-Ranging Natural Metabotype Variation Drives Physiological Plasticity in Healthy Control Inbred Rat Strains
Maintaining homeostasis in higher organisms involves a complex interplay of multiple ubiquitous and organ-specific molecular mechanisms that can be characterized using functional genomics technologies such as transcriptomics, proteomics, and metabonomics and dissected out through genetic investigations in healthy and diseased individuals. We characterized the genomic, metabolic, and physiological divergence of several inbred rat strains-Brown Norway, Lewis, Wistar Kyoto, Fisher (F344)-frequently used as healthy controls in genetic studies of the cardiometabolic syndrome. Hierarchical clustering of H-1 NMR-based metabolic profiles (n = 20 for urine, n = 16 for plasma) identified metabolic phenotype (metabotype) divergence patterns similar to the phylogenetic variability based on single nucleotide polymorphisms. However, the observed urinary metabotype variation exceeded that explainable by genetic polymorphisms. To understand further this natural variation, we used an integrative, knowledge-based network biology metabolic pathway analysis approach, coined Metabolite-Set Enrichment Analysis (MSEA). MSEA reveals that homeostasis and physiological plasticity can be achieved despite widespread divergences in glucose, lipid, amino acid, and energy metabolism in the host, together with different gut microbiota contributions suggestive of strain-specific transgenomic interactions. This work illustrates the concept of natural metabolomic variation, leading to physiologically stable albeit diverse strategies within the range of normality, all of which are highly relevant to animal model physiology, genetical genomics, and patient stratification in personalized healthcare
Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort
Background: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers. Methods: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort. Results: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis. Conclusion: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer
Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort
Background: Hepatocellular carcinoma (HCC), the most prevalent form of
liver cancer, is difficult to diagnose and has limited treatment options
with a low survival rate. Aside from a few key risk factors, such as
hepatitis, high alcohol consumption, smoking, obesity, and diabetes,
there is incomplete etiologic understanding of the disease and little
progress in identification of early risk biomarkers.
Methods: To address these aspects, an untargeted nuclear magnetic
resonance metabolomic approach was applied to pre-diagnostic serum
samples obtained from first incident, primary HCC cases (n = 114) and
matched controls (n = 222) identified from amongst the participants of a
large European prospective cohort.
Results: A metabolic pattern associated with HCC risk comprised of
perturbations in fatty acid oxidation and amino acid, lipid, and
carbohydrate metabolism was observed. Sixteen metabolites of either
endogenous or exogenous origin were found to be significantly associated
with HCC risk. The influence of hepatitis infection and potential liver
damage was assessed, and further analyses were made to distinguish
patterns of early or later diagnosis.
Conclusion: Our results show clear metabolic alterations from early
stages of HCC development with application for better etiologic
understanding, prevention, and early detection of this increasingly
common cancer