3,615 research outputs found
Reliability and Validity of Ratings of Perceived Exertion in Persons With Multiple Sclerosis
Objective: To test the reliability and validity of using the Borg rating of perceived exertion (RPE) scale (ratings 6e20) in persons with multiple sclerosis (PwMS).
Design: Nonrandomized repeated measures.
Setting: Research laboratory.
Participants: Volunteer sample (N=27) comprised of 16 PwMS (10 women) and 11 age-matched persons without multiple sclerosis (MS) (6 women). Clinical measures included symptomatic fatigue, depression, and MS functional capacity.
Interventions: A submaximal cycling test was performed to estimate maximal capacity. Participants then pedaled for 2 minutes at 50% and 60% of predicted maximal oxygen consumption per unit time (V̇O2), and physiological measures and RPE were obtained (week 1: response protocol). One week later, participants replicated the prescribed V̇O2 using the RPE range from week 1 (week 2: reproduction protocol). V̇O2, heart rate, and respiratory quotient were measured continuously; RPE and workload were measured every minute; and blood lactate and mean arterial pressure were measured after exercise.
Main Outcome Measures: RPE, workload, V̇O2, and heart rate from week 1 to week 2.
Results: PwMS had greater fatigue (P2, and heart rate were similar between groups. Both groups had an intraclass correlation coefficient \u3e.86 for RPE, workload, and V̇O2. The intraclass correlation coefficient was comparatively lower for heart rate for both groups (MS group: .72, non-MS group: .83). RPE was highly correlated with V̇O2(rZ.691, P
Conclusions: Results suggest that RPE can be reliably reproduced, is valid, and may be used in exercise prescription in mildly to moderately impaired PwMS during cycling exercise
The charge shuttle as a nanomechanical ratchet
We consider the charge shuttle proposed by Gorelik {\em et al.} driven by a
time-dependent voltage bias. In the case of asymmetric setup, the system
behaves as a rachet. For pure AC drive, the rectified current shows a complex
frequency dependent response characterized by frequency locking at fracional
values of the external frequency. Due to the non-linear dynamics of the
shuttle, the rachet effect is present also for very low frequencies.Comment: 4 pages, 4 figure
On the shot-noise limit of a thermal current
The noise power spectral density of a thermal current between two macroscopic
dielectric bodies held at different temperatures and connected only at a
quantum point contact is calculated. Assuming the thermal energy is carried
only by phonons, we model the quantum point contact as a mechanical link,
having a harmonic spring potential. In the weak coupling, or weak-link limit,
we find the thermal current analog of the well-known electronic shot-noise
expression.Comment: 4 pages, 1 figur
Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator
We present a theoretical study of time-dependent quantum transport in a
resonant tunnel junction coupled to a nanomechanical oscillator within the
non-equilibrium Green's function technique. An arbitrary voltage is applied to
the tunnel junction and electrons in the leads are considered to be at zero
temperature. The transient and the steady state behavior of the system is
considered here in order to explore the quantum dynamics of the oscillator as a
function of time. The properties of the phonon distribution of the
nanomechnical oscillator strongly coupled to the electrons on the dot are
investigated using a non-perturbative approach. We consider both the energy
transferred from the electrons to the oscillator and the Fano factor as a
function of time. We discuss the quantum dynamics of the nanomechanical
oscillator in terms of pure and mixed states. We have found a significant
difference between a quantum and a classical oscillator. In particular, the
energy of a classical oscillator will always be dissipated by the electrons
whereas the quantum oscillator remains in an excited state. This will provide
useful insight for the design of experiments aimed at studying the quantum
behavior of an oscillator.Comment: 24 pages, 10 figure
Quantum Flexoelectricity in Low Dimensional Systems
Symmetry breaking at surfaces and interfaces and the capability to support
large strain gradients in nanoscale systems enable new forms of
electromechanical coupling. Here we introduce the concept of quantum
flexoelectricity, a phenomenon that is manifested when the mechanical
deformation of non-polar quantum systems results in the emergence of net dipole
moments and hence linear electromechanical coupling proportional to local
curvature. The concept is illustrated in carbon systems, including
polyacetylene and nano graphitic ribbons. Using density functional theory
calculations for systems made of up to 400 atoms, we determine the
flexoelectric coefficients to be of the order of ~ 0.1 e, in agreement with the
prediction of linear theory. The implications of quantum flexoelectricity on
electromechanical device applications, and physics of carbon based materials
are discussed.Comment: 15 pages, 3 figure
Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e
The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction
The Effect of Mechanical Resonance on Josephson Dynamics
We study theoretically dynamics in a Josephson junction coupled to a
mechanical resonator looking at the signatures of the resonance in d.c.
electrical response of the junction. Such a system can be realized
experimentally as a suspended ultra-clean carbon nanotube brought in contact
with two superconducting leads. A nearby gate electrode can be used to tune the
junction parameters and to excite mechanical motion. We augment theoretical
estimations with the values of setup parameters measured in the samples
fabricated.
We show that charging effects in the junction give rise to a mechanical force
that depends on the superconducting phase difference. The force can excite the
resonant mode provided the superconducting current in the junction has
oscillating components with a frequency matching the resonant frequency of the
mechanical resonator. We develop a model that encompasses the coupling of
electrical and mechanical dynamics. We compute the mechanical response (the
effect of mechanical motion) in the regime of phase bias and d.c. voltage bias.
We thoroughly investigate the regime of combined a.c. and d.c. bias where
Shapiro steps are developed and reveal several distinct regimes characteristic
for this effect. Our results can be immediately applied in the context of
experimental detection of the mechanical motion in realistic superconducting
nano-mechanical devices.Comment: 18 pages, 11 figure
Homoclinic orbits and chaos in a pair of parametrically-driven coupled nonlinear resonators
We study the dynamics of a pair of parametrically-driven coupled nonlinear
mechanical resonators of the kind that is typically encountered in applications
involving microelectromechanical and nanoelectromechanical systems (MEMS &
NEMS). We take advantage of the weak damping that characterizes these systems
to perform a multiple-scales analysis and obtain amplitude equations,
describing the slow dynamics of the system. This picture allows us to expose
the existence of homoclinic orbits in the dynamics of the integrable part of
the slow equations of motion. Using a version of the high-dimensional Melnikov
approach, developed by Kovacic and Wiggins [Physica D, 57, 185 (1992)], we are
able to obtain explicit parameter values for which these orbits persist in the
full system, consisting of both Hamiltonian and non-Hamiltonian perturbations,
to form so-called Shilnikov orbits, indicating a loss of integrability and the
existence of chaos. Our analytical calculations of Shilnikov orbits are
confirmed numerically
Dynamics of the quantum Duffing oscillator in the driving induced bistable regime
We investigate the nonlinear response of an anharmonic monostable quantum
mechanical resonator to strong external periodic driving. The driving thereby
induces an effective bistability in which resonant tunneling can be identified.
Within the framework of a Floquet analysis, an effective Floquet-Born-Markovian
master equation with time-independent coefficients can be established which can
be solved straightforwardly. Various effects including resonant tunneling and
multi-photon transitions will be described. Our model finds applications in
nano-electromechanical devices such as vibrating suspended nano-wires as well
as in non-destructive read-out procedures for superconducting quantum bits
involving the nonlinear response of the read-out SQUID.Comment: 21 pages, 11 figure
Heat capacity of a thin membrane at very low temperature
We calculate the dependence of heat capacity of a free standing thin membrane
on its thickness and temperature. A remarkable fact is that for a given
temperature there exists a minimum in the dependence of the heat capacity on
the thickness. The ratio of the heat capacity to its minimal value for a given
temperature is a universal function of the ratio of the thickness to its value
corresponding to the minimum. The minimal value of the heat capacitance for
given temperature is proportional to the temperature squared. Our analysis can
be used, in particular, for optimizing support membranes for microbolometers
- …