131 research outputs found

    Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications

    Full text link
    A constant increase in global emission standard is causing fuel cell (FC) technology to gain importance. Over the last two decades, a great deal of research has been focused on developing more active catalysts to boost the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), as well as their durability. Due to material degradation at high-temperature conditions, catalyst design becomes challenging. Two main approaches are suggested: (i) alloying platinum (Pt) with low-cost transition metals to reduce Pt usage, and (ii) developing novel catalyst support that anchor metal particles more efficiently while inhibiting corrosion phenomena. In this comprehensive review, the most recent platinum group metal (PGM) and platinum group metal free (PGM-free) catalyst development is detailed, as well as the development of alternative carbon (C) supports for HT-PEMFCsThis work was financially supported by the Innovation Fund Denmark (MAKE-FC-LAST, 2079-00005B) and the Energy Technology Development and Demonstration (EUDP) Program (COBRA-Drive and 64018-0118). The authors gratefully acknowledge financial support from the Spanish MINECO through the Project PID2020- 116490GB-I00. The authors also thank financial support from the Comunidad de Madrid and the Spanish State through the Recovery, Transformation, and Resilience Plan [“Materiales Disruptivos Bidimensionales (2D)” (MAD2D-CM) (UAM1)-MRR Materiales Avanzados], and the European Union through the Next Generation EU funds. IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, grant SEV2016-0686

    Intracellular Ca2+ Oscillations, a Potential Pacemaking Mechanism in Early Embryonic Heart Cells

    Get PDF
    Early (E9.5–E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca2+ occur and that these induce contractions. The Ca2+ oscillations originate from the sarcoplasmic reticulum and are dependent on the IP3 and the ryanodine receptor. The Ca2+ oscillations activate the Na+-Ca2+ exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca2+ oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca2+ oscillations pace early embryonic heart cells and the ensuing activation of the Na+-Ca2+ exchanger evokes small membrane depolarizations or action potentials
    • …
    corecore