4 research outputs found

    Subclinical Thyroid Dysfunction was not Associated with Cardiac Arrhythmias in a Cross-Sectional Analysis of the ELSA-Brasil Study

    No full text
    Abstract Background: The association of subclinical thyroid dysfunction (STD) with cardiac arrhythmias remains controversial, particularly in the non-elderly population. Objective: To investigate whether STD was associated with cardiac arrhythmias in a cohort of middle-aged and older adults. Methods: Baseline data of the Longitudinal Study of Adult Health, ELSA-Brasil (35-74 years) were collected from 2008 to 2010. After exclusion of clinical hypothyroidism and hyperthyroidism, participants were categorized as euthyroidism (TSH = 0.4-4.0 µU/mL), subclinical hypothyroidism (TSH > 4.0 µU/mL; FT4 = 0.8-1.9 ng/dL), and subclinical hyperthyroidism (TSH 100) and bradycardia (HR 10.0 UI/mL or in older adults. Conduction disorders were less prevalent in older adults with subclinical hypothyroidism (adjusted OR = 0.44; 95% CI 0.24 to 0.80). Conclusion: In this large, multicenter and cross-sectional study, STD was not associated with cardiac arrhythmias, but a longitudinal assessment is necessary

    Increased Expression of miR-223-3p and miR-375-3p and Anti-Inflammatory Activity in HDL of Newly Diagnosed Women in Advanced Stages of Breast Cancer

    No full text
    The expression of inflammation-related miRs bound to high-density lipoproteins (HDLs), the anti-inflammatory activity of HDLs isolated from individuals with breast cancer, and controls were determined. Forty newly diagnosed women with breast cancer naïve of treatment and 10 control participants were included. Cholesterol-loaded bone-marrow-derived macrophages were incubated with HDL from both groups and challenged with lipopolysaccharide (LPS). Interleukin 6 (IL6) and tumor necrosis factor (TNF) in the medium were quantified. The miRs in HDLs were determined by RT-qPCR. Age, body mass index, menopausal status, plasma lipids, and HDL composition were similar between groups. The ability of HDL to inhibit IL6 and TNF production was higher in breast cancer compared to controls, especially in advanced stages of the disease. The miR-223-3p and 375-3p were higher in the HDLs of breast cancer independent of the histological type of the tumor and had a high discriminatory power between breast cancer and controls. The miR-375-3p was greater in the advanced stages of the disease and was inversely correlated with the secretion of inflammatory cytokines. Inflammation-related miRs and the anti-inflammatory role of HDLs may have a significant impact on breast cancer pathophysiology

    Indoleamine 2, 3-dioxygenase (IDO) increases during renal fibrogenesis and its inhibition potentiates TGF-β 1-induced epithelial to mesenchymal transition

    No full text
    Abstract Background Indoleamine 2, 3-dioxygenase (IDO) is an immunomodulatory molecule that has been implicated in several biological processes. Although IDO has been linked with some renal diseases, its role in renal fibrosis is still unclear. Because IDO may be modulated by TGF-β1, a potent fibrogenic molecule, we hypothesized that IDO could be involved in renal fibrosis, especially acting in the TGF-β1-induced tubular epithelial-mesenchymal transition (EMT). We analyzed the IDO expression and activity in a model of renal fibrogenesis, and the effect of the IDO inhibitor 1-methyl-tryptophan (MT) on TGF-β1-induced EMT using tubular cell culture. Methods Male Wistar rats where submited to 7 days of UUO. Non-obstructed kidneys (CL) and kidneys from SHAM rats were used as controls. Masson’s Tricrome and macrophages counting were used to chatacterize the tissue fibrosis. The EMT was analysed though immunohistochemistry and qRT-PCR. Immunohistochemestry in tissue has used to show IDO expression. MDCK cells were incubated with TGF- β1 to analyse IDO expression. Additionally, effects of TGF- β1 and the inhibition of IDO over the EMT process was acessed by immunoessays and scrath wound essay. Results IDO was markedly expressed in cortical and medular tubules of the UUO kidneys. Similarly to the immunolocalizaton of TGF- β1, accompanied by loss of e-cadherin expression and an increase of mesenchymal markers. Results in vitro with MDCK cells, showed that IDO was increased after stimulus with TGF-β1, and treatment with MT potentiated its expression. MDCK stimulated with TGF-β1 had higher migratory activity (scratch-wound assay), which was exacerbated by MT treatment. Conclusions IDO is constitutively expressed in tubular cells and increases during renal fibrogenesis. Although IDO is induced by TGF-β1 in tubular cells, its chemical inhibitor acts as a profibrotic agent
    corecore