1,447 research outputs found
Investigation of Quasi--Realistic Heterotic String Models with Reduced Higgs Spectrum
Quasi--realistic heterotic-string models in the free fermionic formulation
typically contain an anomalous U(1), which gives rise to a Fayet-Iliopolous
term that breaks supersymmetry at the one--loop level in string perturbation
theory. Supersymmetry is restored by imposing F- and D-flatness on the vacuum.
In Phys. Rev. D 78 (2008) 046009, we presented a three generation free
fermionic standard-like model which did not admit stringent F- and D-flat
directions, and argued that the all the moduli in the model are fixed. The
particular property of the model was the reduction of the untwisted Higgs
spectrum by a combination of symmetric and asymmetric boundary conditions with
respect to the internal fermions associated with the compactified dimensions.
In this paper we extend the analysis of free fermionic models with reduced
Higgs spectrum to the cases in which the SO(10) symmetry is left unbroken, or
is reduced to the flipped SU(5) subgroup. We show that all the models that we
study in this paper do admit stringent flat directions. The only examples of
models that do not admit stringent flat directions remain the strandard-like
models of reference Phys. Rev. D 78 (2008) 046009.Comment: 38 pages, 1 figur
On the Possibility of Optical Unification in Heterotic Strings
Recently J. Giedt discussed a mechanism, entitled optical unification,
whereby string scale unification is facilitated via exotic matter with
intermediate scale mass. This mechanism guarantees that a virtual MSSM
unification below the string scale is extrapolated from the running of gauge
couplings upward from M_Z^o when an intermediate scale desert is assumed. In
this letter we explore the possibility of optical unification within the
context of weakly coupled heterotic strings. In particular, we investigate this
for models of free fermionic construction containing the NAHE set of basis
vectors. This class is of particular interest for optical unification, because
it provides a standard hypercharge embedding within SO(10), giving the standard
k_Y = 5/3 hypercharge level, which was shown necessary for optical unification.
We present a NAHE model for which the set of exotic SU(3)_C
triplet/anti-triplet pairs, SU(2)_L doublets, and non-Abelian singlets with
hypercharge offers the possibility of optical unification. Whether this model
can realize optical unification is conditional upon these exotics not receiving
Fayet-Iliopoulos (FI) scale masses when a flat direction of scalar vacuum
expectation values is non-perturbatively chosen to cancel the FI D-term, xi,
generated by the anomalous U(1)-breaking Green-Schwarz-Dine-Seiberg-Wittten
mechanism. A study of perturbative flat directions and their phenomenological
implications for this model is underway.
This paper is a product of the NFS Research Experiences for Undergraduates
and the NSF High School Summer Science Research programs at Baylor University.Comment: 16 pages. Standard Late
Free Fermionic Heterotic Model Building and Root Systems
We consider an alternative derivation of the GSO Projection in the free
fermionic construction of the weakly coupled heterotic string in terms of root
systems, as well as the interpretation of the GSO Projection in this picture.
We then present an algorithm to systematically and efficiently generate input
sets (i.e. basis vectors) in order to study Landscape statistics with minimal
computational cost. For example, the improvement at order 6 is approximately
10^{-13} over a traditional brute force approach, and improvement increases
with order. We then consider an example of statistics on a relatively simple
class of models.Comment: Standard Latex, 12 page
Phenomenology of A Three-Family Standard-like String Model
We discuss the phenomenology of a three-family supersymmetric Standard-like
Model derived from the orientifold construction, in which the ordinary chiral
states are localized at the intersection of branes at angles. In addition to
the Standard Model group, there are two additional U(1)' symmetries, one of
which has family non-universal and therefore flavor changing couplings, and a
quasi-hidden non-abelian sector which becomes strongly coupled above the
electroweak scale. The perturbative spectrum contains a fourth family of exotic
(SU(2)- singlet) quarks and leptons, in which, however, the left-chiral states
have unphysical electric charges. It is argued that these decouple from the low
energy spectrum due to hidden sector charge confinement, and that anomaly
matching requires the physical left-chiral states to be composites. The model
has multiple Higgs doublets and additional exotic states. The moduli-dependent
predictions for the gauge couplings are discussed. The strong coupling agrees
with experiment for reasonable moduli, but the electroweak couplings are too
small.Comment: 22 pages, 4 figure
Minimal Standard Heterotic String Models
Three generation heterotic-string vacua in the free fermionic formulation
gave rise to models with solely the MSSM states in the observable Standard
Model charged sector. The relation of these models to Z_2 x Z_2 orbifold
compactifications dictates that they produce three pairs of untwisted Higgs
multiplets. The reduction to one pair relies on the analysis of supersymmetric
flat directions, that give superheavy mass to the dispensable Higgs states. We
explore the removal of the extra Higgs representations by using the free
fermion boundary conditions and hence directly at the string level, rather than
in the effective low energy field theory. We present a general mechanism that
achieves this reduction by using asymmetric boundary conditions between the
left- and right-moving internal fermions. We incorporate this mechanism in
explicit string models containing three twisted generations and a single
untwisted Higgs doublet pair. We further demonstrate that an additional effect
of the asymmetric boundary conditions is to substantially reduce the
supersymmetric moduli space.Comment: 20 pages, LaTeX; added reference
Mesh-free simulation of complex LCD geometries
We use a novel mesh-free simulation approach to study the post aligned bistable nematic (PABN) cell. By employing the Qian-Sheng formalism for liquid crystals along with a smooth representation of the surface posts, we have been able to identify two distinct stable configurations. The three-dimensional order field configurations of these states and their elastic free energies are consistent with both experimental results and previous simulation attempts. However, alternative states suggested in previous studies do not appear to remain stable when finite post curvature is considered.</p
Quasi-realistic heterotic-string models with vanishing one-loop cosmological constant and perturbatively broken supersymmetry?
Quasi-realistic string models in the free fermionic formulation typically
contain an anomalous U(1), which gives rise to a Fayet-Iliopoulos D-term that
breaks supersymmetry at the one--loop level in string perturbation theory.
Supersymmetry is traditionally restored by imposing F- and D-flatness on the
vacuum. By employing the standard analysis of flat directions we present a
quasi--realistic three generation string model in which stringent F- and D-flat
solution do not appear to exist to all orders in the superpotential. We
speculate that this result is indicative of the non-existence of supersymmetric
flat F- and D-solutions in this model. We provide some arguments in support of
this scenario and discuss its potential implications. Bose-Fermi degeneracy of
the string spectrum implies that the one--loop partition function and hence the
one-loop cosmological constant vanishes in the model. If our assertion is
correct, this model may represent the first known example with vanishing
cosmological constant and perturbatively broken supersymmetry. We discuss the
distinctive properties of the internal free fermion boundary conditions that
may correspond to a large set of models that share these properties. The
geometrical moduli in this class of models are fixed due to asymmetric boundary
conditions, whereas absence of supersymmetric flat directions would imply that
the supersymmetric moduli are fixed as well and the dilaton may be fixed by
hidden sector nonperturbative effects.Comment: 37 pages, LaTeX. Added discussion on stringent flat directions. PRD
published versio
Coarse-grained simulation of amphiphilic self-assembly
We present a computer simulation study of amphiphilic self assembly performed using a computationally efficient single-site model based on Gay-Berne and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer and inverse micelle arrangements can be readily achieved for a single model parameterisation. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as headgroup size and interaction strength also have measurable affects on system properties. </p
- âŠ