12,659 research outputs found
Birefringent filter design
A birefringent filter is provided for tuning the wavelength of a broad band emission laser. The filter comprises thin plates of a birefringent material having thicknesses which are non-unity, integral multiples of the difference between the thicknesses of the two thinnest plates. The resulting wavelength selectivity is substantially equivalent to the wavelength selectivity of a conventional filter which has a thinnest plate having a thickness equal to this thickness difference. The present invention obtains an acceptable tuning of the wavelength while avoiding a decrease in optical quality associated with conventional filters wherein the respective plate thicknesses are integral multiples of the thinnest plate
Field operations with cesium clocks in HF navigation systems
Networks of HF phase comparison marine navigation stations employing cesium clocks are discussed. The largest permanent network is in the Gulf of Mexico where some fourteen base stations are continuously active and others are activated as needed. These HF phase comparison systems, which operate on a single transmission path, require a clock on the mobile unit as well. Inventory consists of upwards of 70 clocks from two different manufacturers. The maintenance of this network as an operating system requires a coordinated effort involving clock preparation, clock environment control, station performance monitoring and field service
Canonical general relativity: Matter fields in a general linear frame
Building on the results of previous work, we demonstrate how matter fields
are incorporated into the general linear frame approach to general relativity.
When considering the Maxwell one-form field, we find that the system that leads
naturally to canonical vierbein general relativity has the extrinsic curvature
of the Cauchy surface represented by gravitational as well as non-gravitational
degrees of freedom. Nevertheless the metric compatibility conditions are
undisturbed, and this apparent derivative-coupling is seen to be an effect of
working with (possibly orthonormal) linear frames. The formalism is adapted to
consider a Dirac Fermion, where we find that a milder form of this apparent
derivative-coupling appears.Comment: 13 pages; uses AMS-latex style file
Experimental verification of computer spray-combustion models
Analytical model formulation, representing performance of spray-combustion device, is based on understanding of atomization, mixing, vaporization, and combustion which occurs in device. Report lists results of correlations of computed values with values obtained from experiments with rocket combustor. Technique offers excellent method for evaluating validity and ranges of applicability of combustion models
An investigation to establish low-level turbulent wind definition in terms of mean micrometeorological parameters summary report, 30 apr. 1962 - 30 sep. 1963
Instrumention and measurement facility for program establishing low-level turbulent wind definition in micrometeorological term
Two-stage combustion for reducing pollutant emissions from gas turbine combustors
Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described
Gamma ray pulsar analysis from photon probability maps
A new method is presented of analyzing skymap-type gamma ray data. Each photon event is replaced by a probability distribution on the sky corresponding to the observing instrument's point spread function. The skymap produced by this process may be used for source detection or identification. Most important, the use of these photon weights for pulsar analysis promises significant improvement over traditional techniques
Earth rotation and core topography
The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report
- …