8 research outputs found

    Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    Get PDF
    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant

    Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    Get PDF
    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant

    Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    No full text
    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results demonstrate that the high conductivity of the nanotubes is related to the non-resonant tunnelling through the amine molecules and a reduced polaron hopping conduction through the vanadium oxide itself. Both nanotube networks and individual nanotubes exhibit similarly high conductivities where the minority carrier transport is bias dependent and nanotube diameter invariant

    Koaksiaalikaapelien vahvistimien ylijännitesuojaus puolijohdekomponenteilla

    No full text
    corecore