16 research outputs found

    MATISSE, perspective of imaging in the mid-infrared at the VLTI

    Get PDF
    International audienceMATISSE is foreseen as a mid-infrared spectro-interferometer combining the beams of up to four UTs/ATs of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory. The related science case study demonstrates the enormous capability of a new generation mid-infrared beam combiner. MATISSE will constitute an evolution of the two-beam interferometric instrument MIDI. MIDI is a very successful instrument which offers a perfect combination of spectral and angular resolution. New characteristics present in MATISSE will give access to the mapping and the distribution of the material (typically dust) in the circumstellar environments by using a wide mid-infrared band coverage extended to L, M and N spectral bands. The four beam combination of MATISSE provides an efficient UV-coverage : 6 visibility points are measured in one set and 4 closure phase relations which can provide aperture synthesis images in the mid-infrared spectral regime

    Direct Imaging in Interferometry : Technical Aspects and Preliminary Results of a Fibered Pupil Densifier

    No full text
    International audienceWe present a test bench designed to study the performances of interferometric recombination systems, mainly for direct imaging applications (hypertelescope principle). It aims at comparing the aperture synthesis, Fizeau and densified pupils beam combination schemes. It allows identification of the technical requirements like photometry and cophasing correction of the future imaging recombiners for large arrays. A densified assembly has been designed in the visible wavelengths, using a multi-apertures mask associated with a wavefront sensor. It allows pupil rearrangement and spatial filtering by using single mode fibers. The technical specifications and the conception of the fiber densifier are described here, with a particular attention to the correction of the differential chromatic dispersion

    The Fast Rotating Star 51 Oph Probed by VEGA/CHARA

    No full text
    International audienceStellar rotation is a key in our understanding of both mass-loss and evolution of intermediate and massive stars. It can lead to anisotropic mass-loss in the form of radiative wind or an excretion disk. We used the VEGA visible beam combiner installed on the CHARA array that reaches a sub milliarcsecond resolution. We derived, for the first time, the extension and flattening of 51 Oph photosphere. We found an elongated ratio of 1.45 ± 0.12
    corecore