193 research outputs found

    Importance of Conserved N-domain Residues Thr 441 , Glu 442 , Lys 515 , Arg 560 , and Leu 562 of Sarcoplasmic Reticulum Ca 2+ -ATPase for MgATP Binding and Subsequent Catalytic Steps: PLASTICITY OF THE NUCLEOTIDE-BINDING SITE

    Get PDF
    Nine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein

    Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis

    Get PDF
    In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K+ ingestion or rest after exercise. Force can be restored by muscle work or treatment with β2-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na+ channel (Nav1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K+]o. In resting mutant soleus, tetrodotoxin (TTX)-suppressible 22Na uptake and [Na+]i were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na+,K+ pump–mediated 86Rb uptake was 83% larger than in WT. Salbutamol stimulated 86Rb uptake and reduced [Na+]i both in mutant and WT soleus. Stimulating Na+,K+ pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na+]i with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na+,K+ pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na+]i on the synthesis of Na+,K+ pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na+ influx and show that contractility can be restored by acute stimulation of the Na+,K+ pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in 86Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These observations may explain how mild exercise helps locally to prevent severe weakness during an attack of HyperKPP

    High DNMT1 Is Associated With Worse Local Control in Early-Stage Laryngeal Squamous Cell Carcinoma

    Get PDF
    OBJECTIVES/HYPOTHESIS: Early-stage laryngeal squamous cell carcinoma (LSCC) has yielded local control rates of 75% after radiotherapy. DNA methylation, in which DNA methyltransferases play an important role, has influence on tumorigenesis. In this study, we investigated the association between the expression of DNA methyltransferase 1 (DNMT1) and local control in early-stage LSCC treated with radiotherapy. STUDY DESIGN: Retrospective cohort study. METHODS: We analyzed a well-defined homogeneous series of 125 LSCC patients treated with radiotherapy with curative intent. The association of immunohistochemical expression of DNMT1 with local control was evaluated using Cox proportional hazard regression models. RESULTS: With a median follow-up of 58 months, 29 local recurrences (23%) were observed. On univariate analysis, worse local control was associated with high DNMT1 expression (hazard ratio [HR] 2.57, 95% confidence interval [CI] 1.10-6.01). Also, higher T-stage (HR 2.48, 95% CI 1.06-5.80) and positive N-status (HR 2.62, 95% CI 1.06-6.47) were associated with worse local control. Multivariate Cox regression demonstrated that high DNMT1 (HR 2.81; 95% CI 1.20-6.58) was independently associated with worse local control. CONCLUSIONS: We found an association between high DNMT1 expression and worse local control in a homogeneous well-defined cohort of early-stage LSCC patients treated with definitive radiotherapy. The association between DNA methylation status as determined by DNMT1 expression and local control suggests that DNMT1 acts as a potential prognostic tumor marker in treatment decision-making in early-stage laryngeal carcinoma. LEVEL OF EVIDENCE: NA Laryngoscope, 2021
    • …
    corecore