115 research outputs found

    <i>In silico</i> modeling of <b>β</b>-carbonic anhydrase inhibitors from the fungus <i>Malassezia globosa</i> as antidandruff agents

    No full text
    <p>A quantitative structure–activity relationship (QSAR) study of sulfonamide inhibitors targeting the β-carbonic anhydrase (CA, EC 4.2.1.1) from the fungus <i>Malassezia globosa</i> is reported. A large set of PRECLAV descriptors has been used to obtain four parametric models. This study presents QSAR data on a pool of 28 compounds. The quality of prediction is high enough (SE = 0.3446, <i>r</i><sup>2</sup> = 0.8687, <i>F</i> = 39.6921, <i>Q</i> = 0.7446). A heuristic algorithm selected the best multiple linear regression (MLR) equation which showed the correlation between the observed values and the calculated values of activity. The proposed prediction set included new, not yet synthesized, 23 molecules having various structures. Many compounds in the prediction set seem to possess higher computed activity compared to the presently available <i>M. globosa</i> β-CA inhibitors.</p

    The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932–2015)

    No full text
    <p>Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by <i>Ioan Puşcaş</i> used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that <i>Helicobacter pylori</i>, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar <i>H. pylori</i> CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by <i>Ioan Puşcaş</i> for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend.</p

    Quantum Chemical Prediction of the Acidities of Sulfonamide Inhibitors of Carbonic Anhydrase

    No full text
    This study examined two pKa calculation approaches (direct and proton exchange schemes) that employ high-level quantum chemical methods and implicit solvent models to predict aqueous Brønsted acidities of a large set of sulfonamides. For gas-phase deprotonation energies, the DSD-PBEP86-D3(BJ) double-hybrid functional provided the best agreement with the LNO-CCSD(T)/CBS benchmark with a mean absolute deviation less than 2 kJ mol–1 when the aug-cc-pVTZ or larger basis sets are used. For a large test set of 54 primary and secondary sulfonamides, the use of the DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level of theory in conjunction with SM12 solvation free energies predict their pKa values with a mean accuracy of 0.9 units. In comparison, the SMD and ADF-COSMO-RS models have slightly higher mean errors of 1.4 and 1.1 pKa units provided that the proton exchange scheme was employed to cancel the systematic errors in these models. The performance of these protocols was less ideal when applied to sulfonic acids, sulfamates, and N-substituted sulfonamides, indicating that the degree of error cancellation is sensitive to the chemical environment around the −NH2 head group. The validated protocols were then used to estimate the pKa values of arylsulfonamide carbonic anhydrase inhibitors, which are used to correct their experimentally measured binding free energies to account for deprotonation of the sulfonamide group upon binding to the enzyme. These corrected values did not have a significant impact on the correlation with MMGBSA binding free energies obtained from classical MD simulations where the ligand is usually considered in the deprotonated form

    Quantum Chemical Prediction of the Acidities of Sulfonamide Inhibitors of Carbonic Anhydrase

    No full text
    This study examined two pKa calculation approaches (direct and proton exchange schemes) that employ high-level quantum chemical methods and implicit solvent models to predict aqueous Brønsted acidities of a large set of sulfonamides. For gas-phase deprotonation energies, the DSD-PBEP86-D3(BJ) double-hybrid functional provided the best agreement with the LNO-CCSD(T)/CBS benchmark with a mean absolute deviation less than 2 kJ mol–1 when the aug-cc-pVTZ or larger basis sets are used. For a large test set of 54 primary and secondary sulfonamides, the use of the DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level of theory in conjunction with SM12 solvation free energies predict their pKa values with a mean accuracy of 0.9 units. In comparison, the SMD and ADF-COSMO-RS models have slightly higher mean errors of 1.4 and 1.1 pKa units provided that the proton exchange scheme was employed to cancel the systematic errors in these models. The performance of these protocols was less ideal when applied to sulfonic acids, sulfamates, and N-substituted sulfonamides, indicating that the degree of error cancellation is sensitive to the chemical environment around the −NH2 head group. The validated protocols were then used to estimate the pKa values of arylsulfonamide carbonic anhydrase inhibitors, which are used to correct their experimentally measured binding free energies to account for deprotonation of the sulfonamide group upon binding to the enzyme. These corrected values did not have a significant impact on the correlation with MMGBSA binding free energies obtained from classical MD simulations where the ligand is usually considered in the deprotonated form

    Quantum Chemical Prediction of the Acidities of Sulfonamide Inhibitors of Carbonic Anhydrase

    No full text
    This study examined two pKa calculation approaches (direct and proton exchange schemes) that employ high-level quantum chemical methods and implicit solvent models to predict aqueous Brønsted acidities of a large set of sulfonamides. For gas-phase deprotonation energies, the DSD-PBEP86-D3(BJ) double-hybrid functional provided the best agreement with the LNO-CCSD(T)/CBS benchmark with a mean absolute deviation less than 2 kJ mol–1 when the aug-cc-pVTZ or larger basis sets are used. For a large test set of 54 primary and secondary sulfonamides, the use of the DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level of theory in conjunction with SM12 solvation free energies predict their pKa values with a mean accuracy of 0.9 units. In comparison, the SMD and ADF-COSMO-RS models have slightly higher mean errors of 1.4 and 1.1 pKa units provided that the proton exchange scheme was employed to cancel the systematic errors in these models. The performance of these protocols was less ideal when applied to sulfonic acids, sulfamates, and N-substituted sulfonamides, indicating that the degree of error cancellation is sensitive to the chemical environment around the −NH2 head group. The validated protocols were then used to estimate the pKa values of arylsulfonamide carbonic anhydrase inhibitors, which are used to correct their experimentally measured binding free energies to account for deprotonation of the sulfonamide group upon binding to the enzyme. These corrected values did not have a significant impact on the correlation with MMGBSA binding free energies obtained from classical MD simulations where the ligand is usually considered in the deprotonated form

    Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors

    No full text
    <div><p></p><p>New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with <i>K<sub>I</sub></i>s in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.</p></div

    α‑Carbonic Anhydrases Possess Thioesterase Activity

    No full text
    The α-carbonic anhydrases (CAs, EC 4.2.1.1) show catalytic versatility acting as esterases with carboxylic, sulfonic, and phosphate esters. Here we prove by kinetic, spectroscopic, and MS studies that they also possess thioesterase activity with a dithiocarbamate ester as a substrate (PhSO<sub>2</sub>NHCSSMe). Its CA-mediated hydrolysis leads to benzenesulfonamide, methyl mercaptan, and COS. The CA thioesterase activity may be useful for designing prodrug enzyme inhibitors, whereas some CA isoforms may use this activity for modulating physiologic/pathologic processes, which are possibly amenable to drug discovery of agents with multiple mechanisms of action

    Synthesis of Novel Selenides Bearing Benzenesulfonamide Moieties as Carbonic Anhydrase I, II, IV, VII, and IX Inhibitors

    No full text
    A series of novel selenides bearing benzenesulfonamide moieties was synthesized and investigated for the inhibition of five human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA I, II, IV, VII, and IX. These enzymes are involved in a variety of diseases, including glaucoma, retinitis pigmentosa, epilepsy, arthritis, and tumors. The investigated compounds showed potent inhibitory action against hCA II, VII, and IX, in the low nanomolar range, thus making them of interest for the development of isoform-selective inhibitors and as candidates for biomedical applications

    Synthesis of two phloroglucinol derivatives with cinnamyl moieties as inhibitors of the carbonic anhydrase isozymes I and II: an <i>in vitro</i> study

    No full text
    <p>Two cinnamyl-substituted phloroglucinols, 4-p-methoxycinnamyl phloroglucinol (<b>9</b>) and 4,6-bis-p-methoxycinnamyl phloroglucinol (<b>10</b>) were synthesized. Two carbonic anhydrases, human carbonic anhydrase I and II (hCA I and II), were purified. Kinetic interactions between these isozymes with <b>9</b> and <b>10</b> were investigated. These new compounds exhibited inhibitory effects on the hCA I and II enzymes’ activity <i>in vitro</i>. The combination of the inhibitory effects of both phloroglucinol and p-coumaric acid groups in a single compound was explored. However, relative to the inhibitory effects of the two groups separately, compounds <b>9</b> and <b>10</b> demonstrated comparable inhibitory effects. More effective inhibitors of CAs could be created by testing these compounds on other CA isozymes.</p

    Structure–Activity Relationship for Sulfonamide Inhibition of Helicobacter pylori α‑Carbonic Anhydrase

    No full text
    α-Carbonic anhydrase of Helicobacter pylori (HpαCA) plays an important role in the acclimation of this oncobacterium to the acidic pH of the stomach. Sulfonamide inhibitors of HpαCA possess anti-H. pylori activity. The crystal structures of complexes of HpαCA with a family of acetazolamide-related sulfonamides have been determined. Analysis of the structures revealed that the mode of sulfonamide binding correlates well with their inhibitory activities. In addition, comparisons with the corresponding inhibitor complexes of human carbonic anhydrase II (HCAII) indicated that HpαCA possesses an additional, alternative binding site for sulfonamides that is not present in HCAII. Furthermore, the hydrophobic pocket in HCAII that stabilizes the apolar moiety of sulfonamide inhibitors is replaced with a more open, hydrophilic pocket in HpαCA. Thus, our analysis identified major structural features can be exploited in the design of selective and more potent inhibitors of HpαCA that may lead to novel antimicrobials
    • …
    corecore