109 research outputs found

    Teaching eco-design by using LCA analysis of company's product portfolio: the case study of an Italian manufacturing firm

    Get PDF
    Abstract Eco-design is a design paradigm aiming to the development of sustainable products. Life Cycle Assessment (LCA) is considered an eco-design tool able to assess the product environmental performances through a life cycle perspective. However, LCA shows some limitations in industry's daily practice and cannot be considered a standard for implementing eco-design. The paper aims to describe the implementation of a novel eco-design teaching approach involving company's employees from different technical departments. LCA analysis of company's product portfolio allowed to create a specific eco-knowledge, used to train designers and engineers on this subject for the implementation of eco-design actions during the development of new products (espresso coffee machine). Results highlighted relevant learning outcomes and significant improvements in terms of environmental sustainability of a new product design

    A Multi-objective Design Approach to Include Material, Manufacturing and Assembly Costs in the Early Design Phase

    Get PDF
    AbstractConceptual design is a crucial activity in the product development process. The design freedom must consider a trade-off analysis among several aspects such as assembly, manufacturing, and costs. The goal of this approach is to define a multi-objective design approach for the determination of feasible design options. The approach is grounded on the concept of functional basis for the analysis of product modules and the theory of Multi Criteria Decision Making (MCDM) approach for the assessment of the best design option. A complex product (tool-holder carousel of a machine tool) is used as a case study to validate the approach

    a 4m approach for a comprehensive analysis and improvement of manual assembly lines

    Get PDF
    Abstract Design for Assembly (DfA) is a well-known technique that supports in the reduction of manufacturing costs. Traditional DfA methods are generally focused on the product design lacking of a holistic view. The proposed 4 M approach takes into account all the most important aspects involved in the manual assembly: Method, Machine, Man and Material. The final goal is to provide a means for the concurrent improvement of the product design, the workstation ergonomics, and the assembly tasks. Results obtained with the electric spindle motor case study confirmed the usefulness of the approach in optimizing the manual assembly

    analytical cost estimation model in high pressure die casting

    Get PDF
    Abstract The present paper aims at the definition of an analytical model for the cost estimation of the High Pressure Die Casting (HPDC) process. The model is based on two main pillars: (i) knowledge formalization and (ii) cost estimation algorithms. The novelty of this approach is the link between the analytical model (algorithms) and the geometrical features of the product under development. The relationship between geometrical features and cost items gives an accurate result in terms of cost breakdown, supporting designers for the application of Design-to-Cost rules in HPDC sector

    Using engineering documentation to create a data framework for life cycle inventory of welded structures

    Get PDF
    Abstract Welding is considered an energy-intensive manufacturing system and it represents one of the most impacting construction process. The paper aims to define a structured data framework for life cycle inventory of a welding process starting from engineering and design documentation. The use of design documentation allows to perform robust LCA analysis which permits to compare the environmental performances of the most widely used welding technologies early in the design process. The necessary information to fill the data framework can be retrieved by available documentation developed in the preliminary design phase allowing to anticipate the life cycle analysis before the construction phase. A ship hull structure designed to be manufactured by the use of GMAW and GTAW welding processes has been analyzed as case study. The use of data framework facilitates the inventory phase creating a consistent and robust inventory for LCA

    Engineering design in food-packaging industry: the case study of a tuna canning machine

    Get PDF
    Abstract Food packaging industry requires machines able to perform different tasks and carry out several functions. Machine modularization allows to feed customer's needs creating a set of equipment with different features and technology. Module derivation is particularly important at the conceptual phase where main decisions are taken and where the degree of freedom are higher, avoiding subsequent costly modification. This study aims at investigating the adoption of engineering design process for the development of a tuna canning machine, deriving main modules for a definition of a product platform. The possibility to have a modular framework in this type of products allows to satisfy constraints coming from different markets and applications (i.e., product quality, adaptability, upgradability, assemblability, compliance with standards where the machine is installed, etc.). Modules were derived based on state-of-art approaches used for product development (i.e., functional analysis, module derivation and morphological matrix) and two examples (i.e., Cutter and Compactor & Shaper modules) were detailed to explain the developed design solutions. Results highlight how different design options can be adopted to overcome several issues (i.e., assemblability, upgradability) and fulfill requirements of different markets (i.e., product quality and aesthetic)

    using design geometrical features to develop an analytical cost estimation method for axisymmetric components in open die forging

    Get PDF
    Abstract Hot forging is an industrial process where a metal piece is formed through a series of dies which permanently change the shape of the part. Open-die forging is a particular type of hot forging in which the used dies are generally flat and the part to be formed has a simple shape. Manufacturing cost estimation is a well-debated topic, especially for traditional manufacturing technologies. However, only few models are available in scientific literature for the open-die forging process. This lack is due to the complexity of the process, characterized by a low level of automation and a high degree of expertise required to develop the process. The paper proposes an analytical model for the cost estimation of axisymmetric components realized using open die-forging. The model uses as input the geometrical features of the part (e.g. dimensions, shape, material and tolerances), and gives as output: (i) the time required for the process development, (ii) the amount of material needed for the part processing and, (iii) the forging machine size/type, from the cutting of the billet to the piece deformation. Two cylindrical discs have been analysed for validating the proposed cost estimation model. The case studies show that the cost models give an accurate result in terms of cost breakdown, allowing the designer a quick calculation of process costs

    Techniques for Fully Integrated Intra-/Inter-chip Optical Communication

    Get PDF
    In this paper we propose to eliminate all data and control pads generally present in conventional chips and to replace them with a new type of ultra-compact, low power optical interconnect implemented almost entirely in CMOS. The proposed scheme enables entirely optical through-chip buses that could service hundreds of thinned stacked dies. Very high throughputs and communication density could be achieved even in tight power budgets. The core of the optical interconnect is a single-photon avalanche diode operating in pulse position modulation. We demonstrate how throughputs of several gigabits per second may be achieved. We also show a systematic analysis and trade-offs of such a system and preliminary results to support its suitability in emerging DSM technologies

    energy label directive current limitations and guidelines for the improvement

    Get PDF
    Abstract Energy label is an important strategy to save energy in the household appliances sector. There are many publications related to standards and labels but little information about their potentialities and limits. Although successful standards and labels have been launched in many Countries, their implementation does not have a unique structure, the same energy policy framework and citizens awareness. This study aims to perform an analysis of principal aspects related to Energy Label framework to understand its main potentialities and limitations. Possible strategies to overcome these limits and suggestions to increase its effectiveness are also proposed

    PARAMETRIC COST MODELLING OF COMPONENTS FOR TURBOMACHINES: PRELIMINARY STUDY

    Get PDF
    AbstractThe ever-increasing competitiveness, due to the market globalisation, has forced the industries to modify their design and production strategies. Hence, it is crucial to estimate and optimise costs as early as possible since any following changes will negatively impact the redesign effort and lead time.This paper aims to compare different parametric cost estimation methods that can be used for analysing mechanical components. The current work presents a cost estimation methodology which uses non-historical data for the database population. The database is settled using should cost data obtained from analytical cost models implemented in a cost estimation software. Then, the paper compares different parametric cost modelling techniques (artificial neural networks, deep learning, random forest and linear regression) to define the best one for industrial components.Such methods have been tested on 9 axial compressor discs, different in dimensions. Then, by considering other materials and batch sizes, it was possible to reach a training dataset of 90 records. From the analysis carried out in this work, it is possible to conclude that the machine learning techniques are a valid alternative to the traditional linear regression ones
    corecore