64 research outputs found

    Achromatopsia: Genetics and Gene Therapy

    Get PDF
    Achromatopsia (ACHM), also known as rod monochromatism or total color blindness, is an autosomal recessively inherited retinal disorder that affects the cones of the retina, the type of photoreceptors responsible for high-acuity daylight vision. ACHM is caused by pathogenic variants in one of six cone photoreceptor-expressed genes. These mutations result in a functional loss and a slow progressive degeneration of cone photoreceptors. The loss of cone photoreceptor function manifests at birth or early in childhood and results in decreased visual acuity, lack of color discrimination, abnormal intolerance to light (photophobia), and rapid involuntary eye movement (nystagmus). Up to 90% of patients with ACHM carry mutations in CNGA3 or CNGB3, which are the genes encoding the alpha and beta subunits of the cone cyclic nucleotide-gated (CNG) channel, respectively. No authorized therapy for ACHM exists, but research activities have intensified over the past decade and have led to several preclinical gene therapy studies that have shown functional and morphological improvements in animal models of ACHM. These encouraging preclinical data helped advance multiple gene therapy programs for CNGA3- and CNGB3-linked ACHM into the clinical phase. Here, we provide an overview of the genetic and molecular basis of ACHM, summarize the gene therapy-related research activities, and provide an outlook for their clinical application

    Vitamin B12 in Leber hereditary optic neuropathy mutation carriers: a prospective cohort study

    Get PDF
    Background Leber hereditary optic neuropathy (LHON) is the most common mitochondrial disorder, frequently resulting in acute or subacute severe bilateral central vision loss. Vitamin B12 deficiency is also a known cause of optic neuropathy through mitochondrial dysfunction. Here we evaluated the prevalence and clinical significance of vitamin B12 deficiency in a large cohort of LHON patients and asymptomatic mutation carriers from a tertiary referral center. Methods From the Munich LHON prospective cohort study, participants included all LHON patients and asymptomatic LHON mutation carriers, who were recruited between February 2014 and March 2020 and consented to participate. Neurological, general, and ophthalmological examinations were regularly performed, as were laboratory tests. Vitamin B12 deficiency was diagnosed if serum vitamin B12 was below 201 pg/mL, or if 201–339 pg/mL plus low serum holotranscobalamin or elevated serum methylmalonic acid or elevated total plasma homocysteine. Results We analyzed 244 subjects, including 147 symptomatic LHON patients (74% males) and 97 asymptomatic mutation carriers (31% males). Median age at study baseline was 34 years (range 5–82 years). The prevalence of vitamin B12 deficiency was higher for LHON mutation carriers than for the general population in all age categories. This was statistically significant for the LHON mutation carriers under 65 years (21% vs. 5–7%, p = 0.002). While vitamin B12 deficiency prevalence was not statistically different between LHON patients and asymptomatic mutation carriers, its clinical correlates, e.g., macrocytosis and polyneuropathy, were more frequent in the subgroup of LHON patients. Excessive alcohol consumption was a significant predictor of vitamin B12 deficiency (p < 0.05). Conclusions The high prevalence of vitamin B12 deficiency in LHON mutation carriers, both asymptomatic mutation carriers and LHON patients, highlights the need for regular vitamin B12 screening in this population, in order to ensure early treatment, aiming for better outcomes. Our study is not conclusive regarding vitamin B12 deficiency as determinant for disease conversion in LHON, and further research is warranted to disentangle the role of vitamin B12 in the pathophysiology and prognosis of LHON

    Smoking and alcohol, health-related quality of life and psychiatric comorbidities in Leber's Hereditary Optic Neuropathy mutation carriers: a prospective cohort study

    Get PDF
    BACKGROUND Leber's hereditary optic neuropathy (LHON) is a rare mitochondrial disorder, characterized by acute or subacute bilateral vision loss, frequently leading to significant chronic disability, mainly in young people. The causal LHON mutations of the mitochondrial DNA have incomplete penetrance, with the highest risk of disease manifestation for male mutation carriers in the second and third decades of life. Here we evaluated smoking, alcohol drinking habits, health-related quality of life (QOL) and psychiatric comorbidities in a cohort of LHON patients and asymptomatic mutation carriers from a tertiary referral centre. METHODS Cross-sectional analysis of the ongoing Munich LHON prospective cohort study. Participants included all LHON patients and asymptomatic LHON mutation carriers older than 16 years at baseline, who were recruited between February 2014 and June 2015 and consented to participate. General, neurological and ophthalmological investigations were performed, including validated questionnaires on smoking, alcohol drinking habits, depressive symptoms and health-related QOL. RESULTS Seventy-one participants were included, 34 LHON patients (82% male) and 37 asymptomatic mutation carriers (19% male). Median age at baseline was 36 years (range 18-75 years). For LHON patients, median age at visual loss onset was 27 years (9 to 72 years). Smoking is more frequent in LHON patients than asymptomatic LHON mutation carriers, and significantly more frequent in both groups than in the general population. Sixty percent of LHON patients, who smoked at disease onset, stopped or significantly reduced smoking after visual loss onset, yet 40% of LHON patients continued to smoke at study baseline. Excessive alcohol consumption is more frequent in male LHON patients than in LHON asymptomatic and more frequent than in the male general population. Further, female asymptomatic LHON mutation carriers are at risk for depression and worse mental QOL scores. CONCLUSIONS Given the high prevalence of smoking and excessive drinking in LHON mutation carriers, implementing effective measures to reduce these risk factors may have a significant impact in reducing LHON disease conversion risk. The underrecognized prevalence of mental health issues in this population of LHON mutation carriers highlights the need for awareness and more timely diagnosis, which may lead to improved outcomes

    Stromal vascular fraction cells as biologic coating of mesh for hernia repair

    Get PDF
    11 p.Background. The interest in non-manipulated cells originating from adipose tissue has raised tremendously in the field of tissue engineering and regenerative medicine. The resulting stromal vascular fraction (SVF) cells have been successfully used in numerous clinical applications. The aim of this experimental work is, first to combine a macroporous synthetic mesh with SVF isolated using a mechanical disruption process, and to assess the effect of those cells on the early healing phase of hernia. Methods. Human SVF cells combined with fibrin were used to coat commercial titanized polypropylene meshes. In vitro, viability and growth of the SVF cells were assessed using live/dead staining and scanning electron microscopy. The influence of SVF cells on abdominal wall hernia healing was conducted on immunodeficient rats, with a focus on short-term vascularization and fibrogenesis. Results. Macroporous meshes were easily coated with SVF using a fibrin gel as temporary carrier. The in vitro experiments showed that the whole process including the isolation of human SVF cells and their coating on PP meshes did not impact on the SVF cells? viability and on their capacity to attach and to proliferate. In vivo, the SVF cells were well tolerated by the animals, and coating mesh with SVF resulted in a decrease degree of vascularity compared to control group at day 21. Conclusions. The utilization of SVF-coated mesh influences the level of angiogenesis during the early onset of tissue healing. Further long-term animal experiments are needed to confirm that this effect correlates with a more robust mesh integration compared to non-SVF-coated mesh.European Hernia Society Research GrantTU

    Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells

    Get PDF
    Background: Uveitis is a potentially blinding inflammatory disease of the inner eye with a high unmet need for new therapeutic interventions. Here, we wanted to investigate the suppressive effect of the intraocular application of the small molecule dihydroorotate dehydrogenase (DHODH)-inhibitor PP-001 on experimental relapsing rat uveitis and furthermore determine its effect on proliferation and cytokine secretion of human peripheral blood lymphocytes (PBL) and human retinal pigment epithelial (RPE) cells in vitro. Methods: Spontaneously relapsing uveitis was induced in rats by immunization with interphotoreceptor retinoid-binding protein (IRBP) peptide R14. PP-001 was injected intravitreally after resolution of the primary disease to investigate further relapses. Proliferation and metabolic activity of phytohemagglutinin (PHA)-stimulated human peripheral lymphocytes with and without PP-001 and cytokine secretion were determined by XTT assay and bioplex bead assay. The RPE cell line ARPE-19 as well as primary human RPE cells treated with PP-001 or anti-vascular endothelial growth factor (VEGF) antibody bevacizumab were also investigated for metabolic activity and cytokine/chemokine secretion. Results: Injection of PP-001 into rat eyes reduced the number of relapses by 70%, from 20 relapses (57% of the rats affected) in the control group to 6 relapses (33% of the rats) in the treatment group. In human PBL cultures, PP-001 reduced the proliferation in a dose-dependent manner. The secretion of several cytokines such as IL-17, IFN-gamma, and VEGF was suppressed by PP-001, as previously observed with rat T cells in the experimental autoimmune uveitis (EAU) model. In contrast, human RPE cells were not affected by PP-001, while the anti-VEGF antibody bevacizumab severely impaired the secretion of various cytokines including VEGF. Conclusions: For the first time, intravitreal injection of PP-001 demonstrated an effective, but transient reduction of relapses in the rat EAU model. In vitro PP-001 suppressed proliferation and cytokine/chemokine secretion of human lymphocytes, while neither human RPE cell line ARPE-19 nor primary RPE cells were affected

    Profound Re-Organization of Cell Surface Proteome in Equine Retinal Pigment Epithelial Cells in Response to In Vitro Culturing

    Get PDF
    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies

    Retinal pigment epithelium is protected against apoptosis by

    Get PDF
    PURPOSE. The degeneration of retinal pigment epithelial (RPE) cells is considered to be a crucial event in the pathophysiology of age-related macular degeneration (AMD). Cumulative oxidative damage has been implicated in the development of the changes seen in AMD. The present study was undertaken to evaluate the expression of the small heat shock protein ␣B-crystallin in the RPE in response to oxidative stress and to explore whether ␣B-crystallin expression confers an antiapoptotic cytoprotective effect on RPE cells. METHODS. Native human RPE cells from the macula and retinal periphery were analyzed by RT-PCR and Western blot analysis for expression of ␣B-crystallin. Monolayer cultures of human RPE cells were stressed by heat shock (42°C for 20 minutes) or oxidant-mediated injury (50 -300 M H 2 O 2 for 1 hour). Induction of ␣B-crystallin and the corresponding mRNA was assessed by Western and Northern blot analyses. To study the cytoprotective effect of ␣B-crystallin, human RPE cells were transfected with either a neomycin-selectable expression vector containing ␣B-crystallin cDNA or a control vector without ␣B-crystallin cDNA. Caspase-3 activity was determined by observing the cleavage of a colorimetric peptide substrate. Cell viability was quantified by combined propidium iodide and Hoechst 33342 staining. RESULTS. ␣B-crystallin is constitutively expressed in RPE under in vivo and in vitro conditions. Western blot analysis of freshly isolated RPE showed greater baseline expression levels in RPE derived from the macular area than in that from the more peripheral regions. Heat shock treatment and oxidative stress caused a significant increase in ␣B-crystallin mRNA and protein. Oxidant-mediated injury in RPE cells with baseline expression levels of ␣B-crystallin resulted in apoptotic cell death, as measured by caspase-3 activity, whereas RPE cells that had been stably transfected with ␣B-crystallin were more resistant to H 2 O 2 -induced cellular injury. CONCLUSIONS. ␣B-crystallin may function as a stress-inducible antiapoptotic protein in human RPE and is inducible by oxidative stress, a condition implicated in the pathogenesis of AMD. Overexpression of ␣B-crystallin may be an important mechanism for the RPE to prevent apoptotic cell death in response to cellular stress. (Invest Ophthalmol Vis Sci. 2002;43:3575-3582) A ge-related macular degeneration (AMD) is the leading cause of severe visual impairment in elderly individuals
    corecore