2,837 research outputs found
Resilience to the effects of social stress on vulnerability to developing drug addiction
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions
Conceptualizing Latina/o College-going Behavior in High School
This study examined the influence of participation in school and extracurricular activities on Latino males’ intention to pursue a bachelor’s degree in relation to their Latina peers. Using nationally representative High School Longitudinal Study data from 2012, researchers developed two factors and three dichotomous variables focused on academic, non-academic, or pre-college activities and ran multivariate regression models to determine the effect on intention to pursue a bachelor’s degree. After accounting for background characteristics, being female retained a strong positive effect on intention to pursue a bachelor’s degree. Two factors were positively associated with Latino males’ bachelor’s degree intention: Hours on School Work and College Planning and Preparation. Two dichotomous variables, Math Activities and Science Activities were positively associated; however, the other dichotomous variable, Non-academic Activities, was negatively associated. Most significantly, this study found that effects of high school activities and preparation for college are not constant across gender
The function of FGF signaling in the lens placode
AbstractPrevious studies suggested that FGF signaling is important for lens formation. However, the times at which FGFs act to promote lens formation, the FGFs that are involved, the cells that secrete them and the mechanisms by which FGF signaling may promote lens formation are not known. We found that transcripts encoding several FGF ligands and the four classical FGF receptors are detectable in the lens-forming ectoderm at the time of lens induction. Conditional deletion of Fgfr1 and Fgfr2 from this tissue resulted in the formation of small lens rudiments that soon degenerated. Lens placodes lacking Fgfr1 and 2 were thinner than in wild-type embryos. Deletion of Fgfr2 increased cell death from the initiation of placode formation and concurrent deletion of Fgfr1 enhanced this phenotype. Fgfr1/2 conditional knockout placode cells expressed lower levels of proteins known to be regulated by FGF receptor signaling, but proteins known to be important for lens formation were present at normal levels in the remaining placode cells, including the transcription factors Pax6, Sox2 and FoxE3 and the lens-preferred protein αA-crystallin. Previous studies identified a genetic interaction between BMP and FGF signaling in lens formation and conditional deletion of Bmpr1a caused increased cell death in the lens placode, resulting in the formation of smaller lenses. In the present study, conditional deletion of both Bmpr1a and Fgfr2 increased cell death beyond that seen in Fgfr2CKO placodes and prevented lens formation. These results suggest that the primary role of autocrine or paracrine FGF signaling is to provide essential survival signals to lens placode cells. Because apoptosis was already increased at the onset of placode formation in Fgfr1/2 conditional knockout placode cells, FGF signaling was functionally absent during the period of lens induction by the optic vesicle. Since the expression of proteins required for lens formation was not altered in the knockout placode cells, we can conclude that FGF signaling from the optic vesicle is not required for lens induction
Epitaxially strained [001]-(PbTiO)(PbZrO) superlattice and PbTiO from first principles
The effect of layer-by-layer heterostructuring and epitaxial strain on
lattice instabilities and related ferroelectric properties is investigated from
first principles for the [001]-(PbTiO)(PbZrO) superlattice and
pure PbTiO on a cubic substrate. The results for the superlattice show an
enhancement of the stability of the monoclinic r-phase with respect to pure
PbTiO. Analysis of the lattice instabilities of the relaxed centrosymmetric
reference structure computed within density functional perturbation theory
suggests that this results from the presence of two unstable zone-center modes,
one confined in the PbTiO layer and one in the PbZrO layer, which
produce in-plane and normal components of the polarization, respectively. The
zero-temperature dielectric response is computed and shown to be enhanced not
only near the phase boundaries, but throughout the r-phase. Analysis of the
analogous calculation for pure PbTiO is consistent with this
interpretation, and suggests useful approaches to engineering the dielectric
properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure
Influencia del tipo de dispersion mecanica en la sintesis de mullita cristalina
La dispersión mecánica de las materias primas, es una etapa primordial en el proceso de sÃntesis de mullita por la ruta quÃmica de los hidroxihidrogeles. Este trabajo pretendió evaluar dos métodos de dispersión mecánica; el primero usando un rotor-stator y el segundo un molino de perlas, buscando obtener mullita bien cristalizada a menores temperaturas y tiempos de los requeridos por la sÃntesis convencional. Ambos métodos de dispersión generan un efecto de alta cizalla logrando una excelente mezcla de los materiales de partida. Finalmente se caracterizó el producto mediante DRX, SEM, análisis quÃmico y cono pirométrico equivalente para evaluar su refractariedad
Fitting Neutrino Physics with a U(1)_R Lepton Number
We study neutrino physics in the context of a supersymmetric model where a
continuous R-symmetry is identified with the total Lepton Number and one
sneutrino can thus play the role of the down type Higgs. We show that
R-breaking effects communicated to the visible sector by Anomaly Mediation can
reproduce neutrino masses and mixing solely via radiative contributions,
without requiring any additional degree of freedom. In particular, a relatively
large reactor angle (as recently observed by the Daya Bay collaboration) can be
accommodated in ample regions of the parameter space. On the contrary, if the
R-breaking is communicated to the visible sector by gravitational effects at
the Planck scale, additional particles are necessary to accommodate neutrino
data.Comment: 19 pages, 3 figures; v2: references added, constraints updated,
overall conclusions unchange
Plasmid-encoded toxin of Escherichia coli cleaves complement system proteins and inhibits complement-mediated lysis in vitro
Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum
- …