218 research outputs found

    Sonic hedgehog medulloblastoma cancer stem cells mirnome and transcriptome highlight novel functional networks

    Get PDF
    Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA-and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB

    A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice.

    Get PDF
    Abstract G-protein coupled receptors 40 and 120 (GPR40 and GPR120) are increasingly emerging as potential therapeutic targets for the treatment of altered glucose homeostasis, and their agonists are under evaluation for their glucagon-like peptide-1 (GLP-1)-mediated therapeutic effects on insulin production and sensitivity. Here, we characterized a new dual GPR40 and GPR120 agonist (DFL23916) and demonstrated that it can induce GLP-1 secretion and improve glucose homeostasis. Resulting from a rational drug design approach aimed at identifying new dual GPR120/40 agonists able to delay receptor internalization, DFL23916 had a good activity and a very high selectivity towards human GPR120 (long and short isoforms) and GPR40, as well as towards their mouse orthologous, by which it induced both Gαq/11-initiated signal transduction pathways with subsequent Ca2+ intracellular spikes and G protein-independent signaling via β-arrestin with the same activity. Compared to the endogenous ligand alpha-linolenic acid (ALA), a selective GPR120 agonist (TUG-891) and a well-known dual GPR40 and GPR120 agonist (GW9508), DFL23916 was the most effective in inducing GLP-1 secretion in human and murine enteroendocrine cells, and this could be due to the delayed internalization of the receptor (up to 3 h) that we observed after treatment with DFL23916. With a good pharmacokinetic/ADME profile, DFL23916 significantly increased GLP-1 portal vein levels in healthy mice, demonstrating that it can efficiently induce GLP-1 secretion in vivo. Contrary to the selective GPR120 agonist (TUG-891), DFL23916 significantly improved also glucose homeostasis in mice undergoing an oral glucose tolerance test (OGTT)

    Internalization of the constitutively active arginine 1152-->glutamine insulin receptor occurs independently of insulin at an accelerated rate.

    Get PDF
    Signals controlling the insulin receptor endocytotic pathway have been investigated using the R1152Q insulin receptor mutant (M). This mutant receptor exhibits high levels of insulin-independent kinase activity, impaired autophosphorylation, and lack of an insulin stimulatory effect on both auto- and substrate phosphorylation. NIH-3T3 fibroblasts expressing M receptors displayed a 2.5-fold higher 125I-insulin internalization rate than wild type (WT) but lacked insulin-induced receptor internalization and down-regulation. Cell surface recycling of internalized receptors also occurred at a higher rate in M cells and was unaffected by insulin. Cell preincubation with 35 mM Tris, which inhibits the insulin receptor degradative route, elicited no effect on M receptor recycling but inhibited that of WT by 40%. In contrast, the energy depleter 2,4-dinitrophenol, which inhibits normal insulin receptor retroendocytosis, impaired M receptor recycling 4-fold more effectively than that of WT. The release of internalized intact 125I-insulin was 6-fold greater in M than in WT fibroblasts and was almost completely inhibited by dinitrophenol, whereas insulin degradation by M cells was 4-fold decreased as compared with WT. Thus, internalization and recycling of the constitutively active Gln1152 receptor kinase occur in the absence of autophosphorylation. However, tyrosine phosphorylation appears to be required for proper sorting of endocytosed insulin receptors

    Activation and mitochondrial translocation of protein kinase Cδ are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells

    Get PDF
    In L6 skeletal muscle cells and immortalized hepatocytes, insulin induced a 2-fold increase in the activity of the pyruvate dehydrogenase (PDH) complex. This effect was almost completely blocked by the protein kinase C (PKC) delta inhibitor Rottlerin and by PKCdelta antisense oligonucleotides. At variance, overexpression of wild-type PKCdelta or of an active PKCdelta mutant induced PDH complex activity in both L6 and liver cells. Insulin stimulation of the activity of the PDH complex was accompanied by a 2.5-fold increase in PDH phosphatases 1 and 2 (PDP1/2) activity with no change in the activity of PDH kinase. PKCdelta antisense blocked insulin activation of PDP1/2, the same as with PDH. In insulin-exposed cells, PDP1/2 activation was paralleled by activation and mitochondrial translocation of PKCdelta, as revealed by cell subfractionation and confocal microscopy studies. The mitochondrial translocation of PKCdelta, like its activation, was prevented by Rottlerin. In extracts from insulin-stimulated cells, PKCdelta co-precipitated with PDP1/2. PKCdelta also bound to PDP1/2 in overlay blots, suggesting that direct PKCdelta-PDP interaction may occur in vivo as well. In intact cells, insulin exposure determined PDP1/2 phosphorylation, which was specifically prevented by PKCdelta antisense. PKCdelta also phosphorylated PDP in vitro, followed by PDP1/2 activation. Thus, in muscle and liver cells, insulin causes activation and mitochondrial translocation of PKCdelta, accompanied by PDP phosphorylation and activation. These events are necessary for insulin activation of the PDH complex in these cells

    Protein Kinase C-α Regulates Insulin Action and Degradation by Interacting with Insulin Receptor Substrate-1 and 14-3-3ϵ

    Get PDF
    Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKC alpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3 epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKC alpha coprecipitation with IRS-1, but not with IRS-2, and with 14-3-3 epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3 epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKC alpha activity, without altering IRS-1/PKC alpha co-precipitation. 14-3-3 epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3 epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKC alpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKC alpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3 epsilon depletion on insulin signaling. Moreover, PKC alpha inhibition was accompanied by a > 2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3 epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKC alpha, and 14-3-3 epsilon. The presence of 14-3-3 epsilon in the complex is not necessary for IRS-1/PKC alpha interaction but modulates PKC alpha activity, thereby regulating insulin signaling and degradation

    Mutation in a conserved motif next to the insulin receptor key autophosphorylation sites de-regulates kinase activity and impairs insulin action.

    Get PDF
    We have recently reported two non-insulin-dependent diabetic patients exhibiting a heterozygous point mutation (R1152-Q) next to the key tyrosine autophosphorylation sites (Y1146, Y1150, Y1151) of the insulin receptor. In the present study, we demonstrate that the Q1152 mutation alters a previously unrecognized consensus sequence in the insulin receptor family of tyrosine kinases. To define the effect of this alteration on insulin receptor function, the mutant insulin receptor (Q1152) was constructed and overexpressed in NIH-3T3 cells. In spite of normal insulin binding, "in vivo" and "in vitro" autophosphorylation as well as transphosphorylation by the wild-type receptor (WT) were deficient in Q1152 as compared with the transfected WT receptors. Insulin-stimulated kinase activity toward poly(Glu, Tyr) 4:1 and the endogenous substrates p120 and p175 were also impaired in Q1152. However, insulin-independent kinase activity of Q1152 was 2-5-fold higher than that of WT. While insulin stimulated 2-deoxyglucose uptake and glycogen synthase activity in WT-transfected cells with a sensitivity proportional to receptor number, no insulin stimulation was observed in Q1152 cells. Similar to the kinase, insulin-independent glycogen synthase activity and 2-deoxyglucose uptake were 2-fold higher in Q1152 than in either WT or parental cells. We conclude that the Q1152 mutation deregulates insulin receptor kinase and generates insulin insensitivity in cells. Alterations in this highly conserved region of the insulin receptor may contribute to non-insulin dependent diabetes mellitin pathogenesis in humans

    Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.

    Get PDF
    Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism

    Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism.

    Get PDF
    Nonenzymatic glycation is increased in diabetes and leads to increased levels of glycated proteins. Most studies have focused on the role of glycation products in vascular complications. Here, we have investigated the action of human glycated albumin (HGA) on insulin signaling in L6 skeletal muscle cells. Exposure of these cells to HGA inhibited insulin-stimulated glucose uptake and glycogen synthase activity by 95 and 80%, respectively. These effects were time- and dose-dependent, reaching a maximum after 12 h incubation with 0.1 mg/ml HGA. In contrast, exposure of the cells to HGA had no effect on thymidine incorporation. Further, HGA reduced insulin-stimulated serine phosphorylation of PKB and GSK3, but did not alter ERK1/2 activation. HGA did not affect either insulin receptor kinase activity or insulin-induced Shc phosphorylation on tyrosine. In contrast, insulin-dependent IRS-1 and IRS-2 tyrosine phosphorylation was severely reduced in cells preincubated with HGA for 24 h. Insulin-stimulated association of PI3K with IRS-1 and IRS-2, and PI3K activity were reduced by HGA in parallel with the changes in IRS tyrosine phosphorylation, while Grb2-IRS association was unchanged. In L6 myotubes, exposure to HGA increased PKC activity by 2-fold resulting in a similar increase in Ser/Thr phosphorylation of IRS-1 and IRS-2. These phosphorylations were blocked by the PKC inhibitor bisindolylmaleimide (BDM). BDM also blocked the action of HGA on insulin-stimulated PKB and GSK3 alpha. Simultaneously, BDM rescued insulin-stimulation of glucose uptake and glycogen synthase activity in cells exposed to HGA. The use of antibodies specific to PKC isoforms shows that this effect appears to be mediated by activated PKC alpha, independent of reactive oxygen species production. In summary, in L6 skeletal muscle cells, exposure to HGA leads to insulin resistance selectively in glucose metabolism with no effect on growth-related pathways regulated by the hormone

    Prep1 Controls Insulin Glucoregulatory Function in Liver by Transcriptional Targeting of SHP1 Tyrosine Phosphatase

    Get PDF
    AbstractObjective. We have investigated the function of the Prep1 gene in insulin-dependent glucose homeostasis in liver. Research design and methods. Prep1 action on insulin glucoregulatory function has been analyzed in liver of Prep1-hypomorphic mice (Prep1(i/i)), which express 2 to 3% of Prep1 mRNA. Results. Based on euglycemic hyperinsulinemic clamp studies, pyruvate tolerance tests and measurement of glycogen content, livers from Prep1(i/i) mice feature increased sensitivity to insulin. Tyrosine phosphorylation of both insulin receptor (IR) and IRS1/2 was significantly enhanced in Prep1(i/i) livers accompanied by a specific down-regulation of the SYP and SHP1 tyrosine phosphatases. Prep1 overexpression in HepG2 liver cells upregulated SYP and SHP1 and inhibited insulin-induced IR and IRS1/2 phosphorylation and was accompanied by reduced glycogen content. Consistently, overexpression of the Prep1 partner Pbx1 but not of p160MBP, mimicked Prep1 effects on tyrosine phosphorylations, glycogen content and on SYP and SHP1 expression. In Prep1 overexpressing cells, antisense silencing of SHP1, but not that of SYP, rescued insulin-dependent IR phosphorylation and glycogen accumulation. Both Prep1 and Pbx1 bind SHP1 promoter at a site located between nt -2113 and -1778. This fragment features enhancer activity and induces luciferase function by 7, 6 and 30-fold, respectively, in response to Prep1, Pbx1 or both. Conclusions. SHP1, a known silencer of insulin signal, is a transcriptional target of Prep1. In liver, transcriptional activation of SHP1 gene by Prep1 attenuates insulin signal transduction and reduces glucose storage

    Antibacterial effectiveness of fecal water and in vitro activity of a multi-strain probiotic formulation against multi-drug resistant microorganisms

    Get PDF
    Introduction: Intestinal colonization with multi-drug resistant (MDR) microorganisms is a consequence of antimicrobial-induced gut dysbiosis. Given the effect of probiotics in modulating gut microbiota, the aim of the study was to investigate whether the ingestion of high concentration multi-strain probiotic formulation would change the antibacterial activity of the feces against clinical strains ofMDRmicroorganisms. The corresponding in vitro antibacterial activity was also investigated. Materials/Methods: The feces of healthy donors (n = 6) were analyzed before and after a 7-day dietary supplementation with a multi-strain probiotic formulation and tested against MDR microorganisms of clinical concern (carbapenem-resistant (CR), Klebsiella pneumoniae (CR-Kp), CR-Acinetobacter baumannii (CR-Ab), CR-Pseudomonas aeruginosa (CR-Pa), and methicillin-resistant Staphylococcus aureus (MRSA)). The tested MDR pathogens were cultured with decreasing concentrations of fecal water obtained before and after the treatment period. Furthermore, to corroborate the results obtained from the feces of healthy donors, the in vitro antibacterial activity of probiotic formulation (both whole probiotic (WP) and probiotic surnatant (PS)) against the same collection of MDR microorganisms was evaluated at different incubation times throughout the minimum bactericidal dilution and the corresponding serial silution number. Results: While before probiotic administration, the fecal water samples did not inhibit MDR microorganism growth, after supplementation, a reduced bacterial growth was shown. Accordingly, a noticeable in vitro activity of WP and PS was observed. Conclusions: Although preliminary, these experiments demonstrated that a specific multi-strain probiotic formulation exhibits in vitro antibacterial activity against MDR microorganisms of clinical concern. If confirmed, these results may justify the administration of probiotics as a decolonization strategy against MDR microorganisms
    corecore