29 research outputs found

    Castanea sativa Ancient Trees Across Europe: Genetic Diversity And Conservation Strategy

    Get PDF
    Long-living trees are witnesses of environmental changes and human interventions; these extraordinary organisms not only represent a historical, landscape and environmental heritage of inestimable value, but they also are a reserve of genetic variability which can considered as a great resource for management programs of forest species. This is the first genetic study on Italian ancient chestnut trees (Castanea sativa Mill.). Ninety-nine ancient trees including the oldest known chestnut in Europe, named ‘Cento Cavalli’, which is believed to be to be between 3,000 and 4,000 years old, were collected. For each tree, more than one sample from canopy and root suckers was collected to test for the genetic integrity of the individuals The samples were genotyped using nine nuclear microsatellite markers (nSSRs) and two chloroplast markers (cpDNA). Genetic variability indices were evaluated using GeneAlEx 6.5, GenoDive 3.0 and HP-rare software. We identified a total of 106 unique genetic profiles within the analyzed individuals. A Bayesian analysis was performed using the software STRUCTURE to unveil the genetic relationships existing between the genotyped individuals. We were able to identify a geographic pattern of genetic diversity among the old chestnut trees. In addition, the genetic similarity among the ancient trees and the close chestnut populations to was studied. A phylogeographic structure of plastid diversity was also established. Our results contribute to evaluate the European chestnut genetic resources, gave insights to its domestication history and to define the best conservation and management strategies

    Monumental chestnut trees: source of genetic diversity, cultural and landscape value

    Get PDF
    The monumental trees are unique individuals of venerable age and considerable size, which represent a heritage of inestimable historical, cultural, landscape, and scientific value for the territtory. They also constitute a source of genetic diversity which confers them longevity and ability to adapt to climate and environmental changes. In this context, studies on centennial trees can be useful for interpretatiton of species history as migration events, selection and anthropogenic actiton. The aim of this research was to evaluate the genetic variability of ancient Castanea sativa trees and relate them to actual natural/naturalized populatitons and varieties in order to enhance our knowledge about the demography, cultivatiton processes and the impact of these giant trees on the genetic diversity of the species. We selected a total of 182 ancient trees from Spain and Central - Southern Italy. For each tree, more than one sample was collected to test for genetic integrity and grafing. The samples were genotyped by means of nuclear microsatellite markers and the variability of plastid DNA regitons (trnH-psbA and trnK/matK) was also tested. Using the sofware GeneALex and HPrare, we evaluated observed (Hto) and expected (He) heterozygosity, allelic richness (Ar) private allelic richness (pAr). A Bayesian analysis was performed using the sofware STRUCTURE to identify the different gene pools and gentotypes. The obtained genetic data were compared with those of natural populations and cultivars collected in the same geographic areas. Higher values of allelic richness were observed in the ancient chestnut trees, a genetic similarity of these individual trees to the natural populations was highlighted. A phylogetographic structure of plastid diversity was alsto established. Eleven genotypes were coincident with 11 cultivars in the EU database. Based on the putative age of giant trees we can hyptothesize that the grafing practice occurred in the Iberian peninsula in the 15th century and in the 17th century in Italy. This work provides new knowledge about the history and domesticatiton tof European chestnut, the results are relevant for the conservatiton and management of Castanea sativa genetic resources

    Curcumin and Andrographolide Co-Administration Safely Prevent Steatosis Induction and ROS Production in HepG2 Cell Line

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease worldwide. Curcumin and andrographolide are famous for improving hepatic functions, being able to reverse oxidative stress and release pro-inflammatory cytokines, and they are implicated in hepatic stellate cell activation and in liver fibrosis development. Thus, we tested curcumin and andrographolide separately and in combination to determine their effect on triglyceride accumulation and ROS production, identifying the differential expression of genes involved in fatty liver and oxidative stress development. In vitro steatosis was induced in HepG2 cells and the protective effect of curcumin, andrographolide, and their combination was observed evaluating cell viability, lipid and triglyceride content, ROS levels, and microarray differential gene expression. Curcumin, andrographolide, and their association were effective in reducing steatosis, triglyceride content, and ROS stress, downregulating the genes involved in lipid accumulation. Moreover, the treatments were able to protect the cytotoxic effect of steatosis, promoting the expression of survival and anti-inflammatory genes. The present study showed that the association of curcumin and andrographolide could be used as a therapeutic approach to counter high lipid content and ROS levels in steatosis liver, avoiding the possible hepatotoxic effect of curcumin. Furthermore, this study improved our understanding of the antisteatosis and hepatoprotective properties of a curcumin and andrographolide combination

    The Evolving Scenario in the Assessment of Radiological Response for Hepatocellular Carcinoma in the Era of Immunotherapy: Strengths and Weaknesses of Surrogate Endpoints

    Get PDF
    Hepatocellular carcinoma (HCC) is a challenging malignancy characterised by clinical and biological heterogeneity, independent of the stage. Despite the application of surveillance programs, a substantial proportion of patients are diagnosed at advanced stages when curative treatments are no longer available. The landscape of systemic therapies has been rapidly growing over the last decade, and the advent of immune-checkpoint inhibitors (ICIs) has changed the paradigm of systemic treatments. The coexistence of the tumour with underlying cirrhosis exposes patients with HCC to competing events related to tumour progression and/or hepatic decompensation. Therefore, it is relevant to adopt proper clinical endpoints to assess the extent of treatment benefit. While overall survival (OS) is the most accepted endpoint for phase III randomised controlled trials (RCTs) and drug approval, it is affected by many limitations. To overcome these limits, several clinical and radiological outcomes have been used. For instance, progression-free survival (PFS) is a useful endpoint to evaluate the benefit of sequential treatments, since it is not influenced by post-progression treatments, unlike OS. Moreover, radiological endpoints such as time to progression (TTP) and objective response rate (ORR) are frequently adopted. Nevertheless, the surrogacy between these endpoints and OS in the setting of unresectable HCC (uHCC) remains uncertain. Since most of the surrogate endpoints are radiology-based (e.g., PFS, TTP, ORR), the use of standardised tools is crucial for the evaluation of radiological response. The optimal way to assess the radiological response has been widely debated, and many criteria have been proposed over the years. Furthermore, none of the criteria have been validated for immunotherapy in advanced HCC. The coexistence of the underlying chronic liver disease and the access to several lines of treatments highlight the urgent need to capture early clinical benefit and the need for standardised radiological criteria to assess cancer response when using ICIs in mono- or combination therapies. Here, we review the most commonly used clinical and radiological endpoints for trial design, as well as their surrogacy with OS. We also review the criteria for radiological response to treatments for HCC, analysing the major issues and the potential future perspectives

    The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change

    Get PDF
    20openItalian coauthor/editorThe Italian TREETALKER NETWORK (ITT-Net) aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience. With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.openCastaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R.Castaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R

    Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients

    Get PDF
    Introduction: The impairment of the sense of smell is often related to chronic rhinosinusitis (CRS) with or without nasal polyps (CRSwNP, CRSsNP). CRSwNP is a frequent condition that drastically worsens the quality of life of those affected; it has a higher prevalence than CRSsNP. CRSwNP patients experience severe loss of smell with earlier presentation and are more likely to experience recurrence of their symptoms, often requiring revision surgery. Methods: The present study performed a multicentric data collection, enrolling 811 patients with CRS divided according to the inflammatory endotype (Type 2 and non-Type 2). All patients were referred for nasal endoscopy for the assessment of nasal polyposis using nasal polyp score (NPS); Sniffin' Sticks olfactory test were performed to measure olfactory function, and SNOT-22 (22-item sinonasal outcome test) questionnaire was used to assess patients' quality of life; allergic status was evaluated with skin prick test and nasal cytology completed the evaluation when available. Results: Data showed that Type 2 inflammation is more common than non-type 2 (656 patients versus 155) and patients suffer from worse quality of life and nasal polyp score. Moreover, 86.1% of patients with Type 2 CRSwNP were affected by a dysfunction of the sense of smell while it involved a lesser percentage of non-Type 2 patients. Indeed, these data give us new information about type-2 inflammation patients' characteristics. Discussion: The present study confirms that olfactory function weights on patients' QoL and it represents an important therapeutic goal that can also improve patients' compliance when achieved. In a future - and present - perspective of rhinological precision medicine, an impairment of the sense of smell could help the clinician to characterize patients better and to choose the best treatment available

    Phytocomplex of a Standardized Extract from Red Orange (Citrus sinensis L. Osbeck) against Photoaging

    No full text
    Excessive exposure to solar radiation is associated with several deleterious effects on human skin. These effects vary from the occasional simple sunburn to conditions resulting from chronic exposure such as skin aging and cancers. Secondary metabolites from the plant kingdom, including phenolic compounds, show relevant photoprotective activities. In this study, we evaluated the potential photoprotective activity of a phytocomplex derived from three varieties of red orange (Citrus sinensis (L.) Osbeck). We used an in vitro model of skin photoaging on two human cell lines, evaluating the protective effects of the phytocomplex in the pathways involved in the response to damage induced by UVA-B. The antioxidant capacity of the extract was determined at the same time as evaluating its influence on the cellular redox state (ROS levels and total thiol groups). In addition, the potential protective action against DNA damage induced by UVA-B and the effects on mRNA and protein expression of collagen, elastin, MMP1, and MMP9 were investigated, including some inflammatory markers (TNF-α, IL-6, and total and phospho NFkB) by ELISA. The obtained results highlight the capacity of the extract to protect cells both from oxidative stress—preserving RSH (p < 0.05) content and reducing ROS (p < 0.01) levels—and from UVA-B-induced DNA damage. Furthermore, the phytocomplex is able to counteract harmful effects through the significant downregulation of proinflammatory markers (p < 0.05) and MMPs (p < 0.05) and by promoting the remodeling of the extracellular matrix through collagen and elastin expression. This allows the conclusion that red orange extract, with its strong antioxidant and photoprotective properties, represents a safe and effective option to prevent photoaging caused by UVA-B exposure

    Computational Analyses of YY1 and Its Target RKIP Reveal Their Diagnostic and Prognostic Roles in Lung Cancer

    No full text
    Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results

    Monuments Unveiled: Genetic Characterization of Large Old Chestnut (Castanea sativa Mill.) Trees Using Comparative Nuclear and Chloroplast DNA Analysis

    No full text
    Large old trees are extraordinary organisms. They not only represent a historical, landscape and environmental heritage of inestimable value, but they also witness a long history of environmental changes and human interventions, and constitute an as yet poorly known reserve of genetic variability which can be considered a great resource for management programs of forest species. This is the first genetic study on Italian, large, old chestnut trees (Castanea sativa Mill.). Ninety-nine trees were surveyed and analysed. For each tree, more than one sample from canopy and root suckers was collected to test for the genetic integrity of the individuals. All samples were genotyped using nine nuclear microsatellite markers (nSSRs) and 106 unique genetic profiles were identified. A Bayesian analysis performed with the software STRUCTURE revealed the occurrence of two main gene pools and unveiled the genetic relationships existing among the genotyped individuals, and with the natural chestnut populations living in proximity. A phylogeographic structure of the plastid diversity was also obtained by the use of DNA sequence variation at two marker regions, revealing different origins and probable connections of the old trees with different glacial refugia. Our results contribute to an improved evaluation of the European chestnut genetic resources and provide useful insights into the species’ history and domestication in Italy. The importance of carefully targeted conservation strategies for these invaluable organisms is reaffirmed
    corecore