147 research outputs found

    IgG and Fcγ Receptors in Intestinal Immunity and Inflammation

    Get PDF
    Fcγ receptors (FcγR) are cell surface glycoproteins that mediate cellular effector functions of immunoglobulin G (IgG) antibodies. Genetic variation in FcγR genes can influence susceptibility to a variety of antibody-mediated autoimmune and inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). More recently, however, genetic studies have implicated altered FcγR signaling in the pathogenesis of inflammatory bowel disease (IBD), a condition classically associated with dysregulated innate and T cell immunity. Specifically, a variant of the activating receptor, FcγRIIA, with low affinity for IgG, confers protection against the development of ulcerative colitis, a subset of IBD, leading to a re-evaluation of the role of IgG and FcγRs in gastrointestinal tract immunity, an organ system traditionally associated with IgA. In this review, we summarize our current understanding of IgG and FcγR function at this unique host-environment interface, from the pathogenesis of colitis and defense against enteropathogens, its contribution to maternal-fetal cross-talk and susceptibility to cancer. Finally, we discuss the therapeutic implications of this information, both in terms of how FcγR signaling pathways may be targeted for the treatment of IBD and how FcγR engagement may influence the efficacy of therapeutic monoclonal antibodies in IBD

    FcγRIIb Balances Efficient Pathogen Clearance and the Cytokine-mediated Consequences of Sepsis

    Get PDF
    The immune response to infection must be controlled to ensure it is optimal for defense while avoiding the consequences of excessive inflammation, which include fatal septic shock. Mice deficient in FcγRIIb, an inhibitory immunoglobulin G Fc receptor, have enhanced immune responses. Therefore, we examined whether FcγRIIb controls the response to Streptococcus pneumoniae. Macrophages from FcγRIIb-deficient mice showed increased antibody-dependent phagocytosis of pneumococci in vitro, and consistent with this infected FcγRIIb-deficient mice demonstrated increased bacterial clearance and survival. In contrast, previously immunized FcγRIIb-deficient mice challenged with large inocula showed reduced survival. This correlated with increased production of the sepsis-associated cytokines tumor necrosis factor α and interleukin 6. We propose that FcγRIIb controls the balance between efficient pathogen clearance and the cytokine-mediated consequences of sepsis, with potential therapeutic implications

    Anti-CTLA-4 (CD 152) monoclonal antibody-induced autoimmune interstitial nephritis

    Get PDF
    Targeted immune-modulating agents are entering clinical practice in many specialties, providing novel therapeutic possibilities but introducing new potential toxicities. We present the first reported case, to our knowledge, of immune-mediated nephritis following the administration of Tremelimumab (CP-675, 206), an anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody. High-dose steroid therapy led to a rapid improvement in renal function, avoiding the need for renal replacement therapy.Peer reviewe

    The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases.

    Get PDF
    The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease

    Neutrophils in secondary lymphoid organs.

    Get PDF
    Funder: National Institute of Health Research (NIHR)Neutrophils are traditionally considered short-lived, circulating innate immune cells that are rapidly recruited to sites of inflammation in response to infectious and inflammatory stimuli. Neutrophils efficiently internalize, kill or entrap pathogens, but their effector molecules may cause collateral tissue damage. More recently, it has been appreciated that neutrophils can also influence adaptive immunity. Lymph nodes (LNs) are immune cell-rich secondary lymphoid organs that provide an ideal platform for cellular interaction and the integration of immunological information collected from local tissues. A variety of peripheral stimuli promote neutrophil migration to draining LNs via blood or lymphatics, utilizing differing molecular cues depending on the site of entry. Within LNs, neutrophils interact with other innate and adaptive cells. Crosstalk with subcapsular sinus macrophages contributes to the control of pathogen spread beyond the LN. Neutrophils can influence antigen presentation indirectly by interacting with DCs or directly by expressing major histocompatibility complex (MHC) and costimulatory molecules for antigen presentation. Interactions between neutrophils and adaptive lymphocytes can alter B-cell antibody responses. Studies have shown conflicting results on whether neutrophils exert stimulatory or inhibitory effects on other LN immune cells, with stimulus-specific and temporal differences in the outcome of these interactions. Furthermore, neutrophils have also been shown to traffick to LNs in homeostasis, with a potential role in immune surveillance, antigen capture and in shaping early adaptive responses in LNs. Understanding the mechanisms underpinning the effects of neutrophils on LN immune cells and adaptive immunity could facilitate the development of neutrophil-targeted therapies in inflammatory diseases

    Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes.

    Get PDF
    Neutrophils play a key role in innate immunity. As the dominant circulating phagocyte, they are rapidly recruited from the bloodstream to sites of infection or injury to internalize and destroy microbes. More recently, neutrophils have been identified in uninfected organs, challenging the classical view of their function. Here we show that neutrophils were present in lymph nodes (LNs) in homeostasis. Using flow cytometry and confocal imaging, we identified neutrophils within LNs in naive, unchallenged mice, including LNs draining the skin, lungs, and gastrointestinal tract. Neutrophils were enriched within specific anatomical regions, in the interfollicular zone, a site of T cell activation. Intravital two-photon microscopy demonstrated that LN neutrophils were motile, trafficked into LNs from both blood and tissues via high endothelial venules and afferent lymphatics, respectively, and formed interactions with dendritic cells in LNs. Murine and human LN neutrophils had a distinct phenotype compared with circulating neutrophils, with higher major histocompatibility complex II (MHCII) expression, suggesting a potential role in CD4 T cell activation. Upon ex vivo stimulation with IgG immune complex (IC), neutrophils up-regulated expression of MHCII and costimulatory molecules and increased T cell activation. In vivo, neutrophils were capable of delivering circulating IC to LNs, suggesting a broader functional remit. Overall, our data challenge the perception that neutrophil patrol is limited to the circulation in homeostasis, adding LNs to their routine surveillance territory.L.S.C.L. was funded by Wellcome Trust (104384/Z/14/Z). M.R.C. is supported by National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, Chan-Zuckerburg Initiative Human Cell Atlas Technology Development Grant, Medical Research Council New Investigator Research Grant (MR/N024907/1), Arthritis Research UK Cure Challenge Research Grant (21777), and NIHR Research Professorship (RP-2017-08- ST2-002)

    A Systematic Review and Meta-Analysis of Alpha Synuclein Auto-Antibodies in Parkinson's Disease

    Get PDF
    Immune dysfunction has been associated with Parkinson's disease (PD) and its progression. Antibodies play an important role in both innate and adaptive responses, acting as powerful effector molecules that can propagate inflammation by activating innate immune cells. Alpha synuclein binding antibodies have been described in PD patients with conflicting associations. In this article, we consider the potential mechanistic basis of alpha synuclein auto-antibody development and function in PD. We present a systematic review and meta-analysis of antibody studies in PD cohorts showing that there is weak evidence for an increase in alpha synuclein auto-antibodies in PD patients particularly in early disease. The confidence with which this conclusion can be drawn is limited by the heterogeneity of the clinical cohorts used, inclusion of unmatched controls, inadequate power and assay related variability. We have therefore made some recommendations for the design of future studies

    SIGN-R1 Contributes to Protection against Lethal Pneumococcal Infection in Mice

    Get PDF
    Rapid clearance of pathogens is essential for successful control of pyogenic bacterial infection. Previous experiments have shown that antibody to specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1 inhibits uptake of capsular polysaccharide by marginal zone macrophages, suggesting a role for SIGN-R1 in this process. We now demonstrate that mice lacking SIGN-R1 (a mouse homologue of human dendritic cell–SIGN receptor) are significantly more susceptible to Streptococcus pneumoniae infection and fail to clear S. pneumoniae from the circulation. Marginal zone and peritoneal macrophages show impaired bacterial recognition associated with an inability to bind T-independent type 2 antigens such as dextran. Our work represents the first evidence for a protective in vivo role for a SIGN family molecule

    Contrasting genetic association of IL2RA with SLE and ANCA-associated vasculitis.

    Get PDF
    BACKGROUND: Autoimmune diseases are complex and have genetic and environmental susceptibility factors. The objective was to test the genetic association of systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibody (ANCA) - associated systemic vasculitis (AAV) with SNPs in the IL2RA region and to correlate genotype with serum levels of IL-2RA. METHODS: Using a cohort of over 700 AAV patients, two SLE case-control studies and an SLE trio collection (totalling over 1000 SLE patients), and a TaqMan genotyping approach, we tested 3 SNPs in the IL2RA locus, rs11594656, rs2104286 & rs41295061, each with a prior association with autoimmune disease; rs11594656 and rs41295061 with type 1 diabetes (T1D) and rs2104286 with multiple sclerosis (MS) and T1D. RESULTS: We show that SLE is associated with rs11594656 (P = 3.87 x 10-7) and there is some evidence of association of rs41295061 with AAV (P = 0.0122), which both have prior association with T1D. rs2104286, an MS and T1D - associated SNP in the IL2RA locus, is not associated with either SLE or AAV. CONCLUSION: We have confirmed a previous suggestion that the IL2RA locus is associated with SLE and showed some evidence of association with AAV. Soluble IL-2RA concentrations correlate with rs11594656 genotype in quiescent disease in both AAV and SLE. Differential association of autoimmune diseases and SNPs within the IL2RA locus suggests that the IL2RA pathway may prove to play differing, as yet undefined, roles in each disease
    corecore