5,861 research outputs found

    Soliton Solutions to the Einstein Equations in Five Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson--(anti)-de Sitter ((A)dS) metrics, with the added feature of having Lorentzian signatures. They provide an affirmative answer to the open question as to whether or not there exist solutions with negative cosmological constant that asymptotically approach AdS5/Γ_{5}/\Gamma, but have less energy than AdS5/Γ_{5}/\Gamma. We present evidence that these solutions are the lowest-energy states within their asymptotic class.Comment: 9 pages, Latex; Final version that appeared in Phys. Rev. Lett; title changed by journal from original title "Eguchi-Hanson Solitons

    M-Branes on k-center Instantons

    Full text link
    We present analytic solutions for membrane metric function based on transverse kk-center instanton geometries. The membrane metric functions depend on more than two transverse coordinates and the solutions provide realizations of fully localized type IIA D2/D6 and NS5/D6 brane intersections. All solutions have partial preserved supersymmetries.Comment: 22 pages, 5 figure

    Locally extracting scalar, vector and tensor modes in cosmological perturbation theory

    Full text link
    Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second- and higher-order because perturbative modes are sourced by products of lower-oder modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second-order. We perform much of our analysis using an index-free `vector-calculus' approach which makes manipulating tensor equations considerably simpler.Comment: 13 pages. Final version to appear in CQ

    Eguchi-Hanson Solitons in Odd Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson-(A)dS metrics, with the added feature of having Lorentzian signatures. They are asymptotic to (A)dSd+1/Zp_{d+1}/Z_p. In the AdS case their energy is negative relative to that of pure AdS. We present perturbative evidence in 5 dimensions that such metrics are the states of lowest energy in their asymptotic class, and present a conjecture that this is generally true for all such metrics. In the dS case these solutions have a cosmological horizon. We show that their mass at future infinity is less than that of pure dS.Comment: 26 pages, Late

    Delocalization of brane gravity by a bulk black hole

    Get PDF
    We investigate the analogue of the Randall-Sundrum brane-world in the case when the bulk contains a black hole. Instead of the static vacuum Minkowski brane of the RS model, we have an Einstein static vacuum brane. We find that the presence of the bulk black hole has a dramatic effect on the gravity that is felt by brane observers. In the RS model, the 5D graviton has a stable localized zero-mode that reproduces 4D gravity on the brane at low energies. With a bulk black hole, there is no such solution -- gravity is delocalized by the 5D horizon. However, the brane does support a discrete spectrum of metastable massive bound states, or quasinormal modes, as was recently shown to be the case in the RS scenario. These states should dominate the high frequency component of the bulk gravity wave spectrum on a cosmological brane. We expect our results to generalize to any bulk spacetime containing a Killing horizon.Comment: 7 pages, 6 figure

    A generalized linear Hubble law for an inhomogeneous barotropic Universe

    Get PDF
    In this work, I present a generalized linear Hubble law for a barotropic spherically symmetric inhomogeneous spacetime, which is in principle compatible with the acceleration of the cosmic expansion obtained as a result of high redshift Supernovae data. The new Hubble function, defined by this law, has two additional terms besides an expansion one, similar to the usual volume expansion one of the FLRW models, but now due to an angular expansion. The first additional term is dipolar and is a consequence of the existence of a kinematic acceleration of the observer, generated by a negative gradient of pressure or of mass-energy density. The second one is quadrupolar and due to the shear. Both additional terms are anisotropic for off-centre observers, because of to their dependence on a telescopic angle of observation. This generalized linear Hubble law could explain, in a cosmological setting, the observed large scale flow of matter, without to have recourse to peculiar velocity-type newtonian models. It is pointed out also, that the matter dipole direction should coincide with the CBR dipole one.Comment: 9 pages, LaTeX, to be published in Class. Quantum Gra

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where α\alpha, β\beta, γ\gamma, κ\kappa and μ\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    Non-classical symmetries and the singular manifold method: A further two examples

    Full text link
    This paper discusses two equations with the conditional Painleve property. The usefulness of the singular manifold method as a tool for determining the non-classical symmetries that reduce the equations to ordinary differential equations with the Painleve property is confirmed once moreComment: 9 pages (latex), to appear in Journal of Physics
    • …
    corecore