77 research outputs found

    The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe

    Get PDF
    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna

    Naturally Occurring Triggers that Induce Apoptosis-Like Programmed Cell Death in Plasmodium berghei Ookinetes

    Get PDF
    Several protozoan parasites have been shown to undergo a form of programmed cell death that exhibits morphological features associated with metazoan apoptosis. These include the rodent malaria parasite, Plasmodium berghei. Malaria zygotes develop in the mosquito midgut lumen, forming motile ookinetes. Up to 50% of these exhibit phenotypic markers of apoptosis; as do those grown in culture. We hypothesised that naturally occurring signals induce many ookinetes to undergo apoptosis before midgut traversal. To determine whether nitric oxide and reactive oxygen species act as such triggers, ookinetes were cultured with donors of these molecules. Exposure to the nitric oxide donor SNP induced a significant increase in ookinetes with condensed nuclear chromatin, activated caspase-like molecules and translocation of phosphatidylserine that was dose and time related. Results from an assay that detects the potential-dependent accumulation of aggregates of JC-1 in mitochondria suggested that nitric oxide does not operate via loss of mitochondrial membrane potential. L-DOPA (reactive oxygen species donor) also caused apoptosis in a dose and time dependent manner. Removal of white blood cells significantly decreased ookinetes exhibiting a marker of apoptosis in vitro. Inhibition of the activity of nitric oxide synthase in the mosquito midgut epithelium using L-NAME significantly decreased the proportion of apoptotic ookinetes and increased the number of oocysts that developed. Introduction of a nitric oxide donor into the blood meal had no effect on mosquito longevity but did reduce prevalence and intensity of infection. Thus, nitric oxide and reactive oxygen species are triggers of apoptosis in Plasmodium ookinetes. They occur naturally in the mosquito midgut lumen, sourced from infected blood and mosquito tissue. Up regulation of mosquito nitric oxide synthase activity has potential as a transmission blocking strategy

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF
    corecore