718 research outputs found

    Low Timing Jitter Detector for Gigahertz Quantum Key Distribution

    Get PDF
    A superconducting single-photon detector based on a niobium nitride nanowire is demonstrated in an optical-fibre-based quantum key distribution test bed operating at a clock rate of 3.3 GHz and a transmission wavelength of 850 nm. The low jitter of the detector leads to significant reduction in the estimated quantum bit error rate and a resultant improvement in the secrecy efficiency compared to previous estimates made by use of silicon single-photon avalanche detectors.Comment: 11 pages, including 2 figure

    Survival of the black hole's Cauchy horizon under non-compact perturbations

    Full text link
    We study numerically the evolution of spactime, and in particular of a spacetime singularity, inside a black hole under a class of perturbations of non-compact support. We use a very simplified toy model of a spherical charged black hole which is perturbed nonlinearly by a self-gravitating, spherical scalar field. The latter grows logarithmically with advanced time along an outgoing characteristic hypersurface. We find that for that class of perturbations a portion of the Cauchy horizon survives as a non-central, null singularity.Comment: 5 pages, 4 figure

    Periodic orbit resonances in layered metals in tilted magnetic fields

    Full text link
    The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field which is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface.Comment: 4 pages, RevTeX + epsf, 2 figures. Discussion of other work revised. To appear in Phys. Rev. B, Rapid Commun., October 1

    Precision wildlife monitoring using unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.Jarrod C. Hodgson, Shane M. Baylis, Rowan Mott, Ashley Herrod & Rohan H. Clark

    Indications of coherence-incoherence crossover in layered transport

    Get PDF
    For many layered metals the temperature dependence of the interlayer resistance has a different behavior than the intralayer resistance. In order to better understand interlayer transport we consider a concrete model which exhibits this behavior. A small polaron model is used to illustrate how the interlayer transport is related to the coherence of quasi-particles within the layers. Explicit results are given for the electron spectral function, interlayer optical conductivity and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX

    Dynamics of tournaments: the soccer case

    Full text link
    A random walk-like model is considered to discuss statistical aspects of tournaments. The model is applied to soccer leagues with emphasis on the scores. This competitive system was computationally simulated and the results are compared with empirical data from the English, the German and the Spanish leagues and showed a good agreement with them. The present approach enabled us to characterize a diffusion where the scores are not normally distributed, having a short and asymmetric tail extending towards more positive values. We argue that this non-Gaussian behavior is related with the difference between the teams and with the asymmetry of the scores system. In addition, we compared two tournament systems: the all-play-all and the elimination tournaments.Comment: To appear in EPJ

    Type IIB Colliding Plane Waves

    Full text link
    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+22n+2--dimensional Einstein gravity with a n+1n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n=4n=4, our results pertain to the collision of two ten-dimensional type IIB Blau - Figueroa o'Farrill - Hull - Papadopoulos plane waves.Comment: 20+10 pages, 2 figures, uses JHEP3.cls; v2: refs [3,10,22] corrected, remark added below (3.9) on inexistence of conformally flat CPW in our ansatz, final version to appear in JHE

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Anomalous c-axis charge dynamics in copper oxide materials

    Full text link
    Within the t-J model, the c-axis charge dynamics of the copper oxide materials in the underdoped and optimally doped regimes is studied by considering the incoherent interlayer hopping. It is shown that the c-axis charge dynamics is mainly governed by the scattering from the in-plane fluctuation. In the optimally doped regime, the c-axis resistivity is a linear in temperatures, and shows the metallic-like behavior for all temperatures, while the c-axis resistivity in the underdoped regime is characterized by a crossover from the high temperature metallic-like behavior to the low temperature semiconducting-like behavior, which are consistent with experiments and numerical simulations.Comment: 6 pages, Latex, Three figures are adde
    corecore