48,563 research outputs found

    The use of satellite data in understanding and predicting convective and large-scale dynamical processes

    Get PDF
    Mesoscale convective processes and how they affect and interact with mid-latitude cyclones were studied. The ageostrophic and associated vertical motion field was calculated using a highly accurate iterative method of solving the semigeostrophic omega equation. The tendencies for convective destabilization in the 850-750 mb layer due to differential geostrophic and ageostrophic advection and differential moist adiabatic ascent, were found. The spectral models of the index oscillation, one barotropic and the other baroclinic, were developed. Theoretical and observational studies of cloud streets were conducted

    Urban Regeneration of Industrial Areas: Affordable Housing for Low Income Populations in Cities

    Get PDF
    The UK-China Sustainable Development Dialogue (SDD) is a partnership between the UK and Chinese Governments to promote collaboration and good practice on sustainable development. It is framed by a 2004 joint Prime Ministerial declaration and was formally established in 2005 by an agreement signed by UK Deputy Prime Minister John Prescott and State Councillor Tang. The SDD was founded on the recognition that, in an interdependent world, international co-operation is needed to ensure that learning is shared and efforts are made collectively towards achieving common goals. This report is the 13th and Final Paper in the SDD (Urban Strand. It draws together the core conclusions from the previous twelve papers and offers recommendations for taking the dialogue forward

    Stratiform clouds and their interaction with atmospheric motions

    Get PDF
    During the 1987 to 1988 academic year, three projects were finished and plans were made to redirect and focus work in a proposal now being reviewed. The completed work involves study of waves on an equatorial beta-plane in shear flow, investigation of the influence of orography on the index cycle, and analysis of a model of cloud street development in a thermally-forced, sheared environment. The proposed work involves study of boundary layer circulations supporting stratocumulus decks and investigation of how the radiative effects of these clouds modulate larger-scale flows such as those associated with the index oscillation

    Dynamics of moving bubbles in single and binary component systems

    Get PDF
    Dynamics of a single bubble moving in a quiescent liquid is analyzed for single and binary component systems. The transport of energy and/or mass at thermodynamic-phase equilibrium governs the dynamics of the bubble at its interface

    Statistical Global Modeling of Beta-Decay Halflives Systematics Using Multilayer Feedforward Neural Networks and Support Vector Machines

    Full text link
    In this work, the beta-decay halflives problem is dealt as a nonlinear optimization problem, which is resolved in the statistical framework of Machine Learning (LM). Continuing past similar approaches, we have constructed sophisticated Artificial Neural Networks (ANNs) and Support Vector Regression Machines (SVMs) for each class with even-odd character in Z and N to global model the systematics of nuclei that decay 100% by the beta-minus-mode in their ground states. The arising large-scale lifetime calculations generated by both types of machines are discussed and compared with each other, with the available experimental data, with previous results obtained with neural networks, as well as with estimates coming from traditional global nuclear models. Particular attention is paid on the estimates for exotic and halo nuclei and we focus to those nuclides that are involved in the r-process nucleosynthesis. It is found that statistical models based on LM can at least match or even surpass the predictive performance of the best conventional models of beta-decay systematics and can complement the latter.Comment: 8 pages, 1 fiqure, Proceedings of the 17th HNPS Symposiu

    Microsecond resolution of quasiparticle tunneling in the single-Cooper-pair-transistor

    Full text link
    We present radio-frequency measurements on a single-Cooper-pair-transistor in which individual quasiparticle poisoning events were observed with microsecond temporal resolution. Thermal activation of the quasiparticle dynamics is investigated, and consequently, we are able to determine energetics of the poisoning and un-poisoning processes. In particular, we are able to assign an effective quasiparticle temperature to parameterize the poisoning rate.Comment: 4 pages, 4 fig

    Synthesis of a Molecular Charm Bracelet via Click Cyclization and Olefin Metathesis Clipping

    Get PDF
    We describe the synthesis of a polycatenated cyclic polymer, a structure that resembles a molecular charm bracelet. Ruthenium-catalyzed ring-opening metathesis polymerization of an aminocontaining cyclic olefin monomer in the presence of a chain transfer agent generated an α,ω-diazide functionalized polyamine. Cyclization of the resulting linear polyamine using pseudo-high-dilution coppercatalyzed click cyclization produced a cyclic polymer in 19% yield. The click reaction was then further employed to remove linear contaminants from the cyclic polymer using azide- and alkyne-functionalized scavenging resins, and the purified cyclic polymer product was characterized by gel permeation chromatography, ^1H NMR spectroscopy, and IR spectroscopy. Polymer hydrogenation and conversion to the corresponding polyammonium species enabled coordination and interlocking of diolefin polyether fragments around the cyclic polymer backbone using ruthenium-catalyzed ring-closing olefin metathesis to afford a molecular charm bracelet structure. This charm bracelet complex was characterized by ^1H NMR spectroscopy, and the catenated nature of the small rings was confirmed using two-dimensional diffusion-ordered NMR spectroscopy

    Finding flows in the one-way measurement model

    Full text link
    The one-way measurement model is a framework for universal quantum computation, in which algorithms are partially described by a graph G of entanglement relations on a collection of qubits. A sufficient condition for an algorithm to perform a unitary embedding between two Hilbert spaces is for the graph G, together with input/output vertices I, O \subset V(G), to have a flow in the sense introduced by Danos and Kashefi [quant-ph/0506062]. For the special case of |I| = |O|, using a graph-theoretic characterization, I show that such flows are unique when they exist. This leads to an efficient algorithm for finding flows, by a reduction to solved problems in graph theory.Comment: 8 pages, 3 figures: somewhat condensed and updated version, to appear in PR
    • …
    corecore