2 research outputs found

    Quantum teleportation and entanglement swapping with linear optics logic gates

    Full text link
    We report on the usage of a linear optics phase gate for distinguishing all four Bell states simultaneously in a quantum teleportation and entanglement swapping protocol. This is demonstrated by full state tomography of the one and two qubit output states of the two protocols, yielding average state fidelities of about 0.83 and 0.77, respectively. In addition, the performance of the teleportation channel is characterised by quantum process tomography. The non classical properties of the entanglement swapping output states are further confirmed by the violation of a CHSH-type Bell inequality of 2.14 on average.Comment: 11 pages, 3 figure

    Architectural design for a topological cluster state quantum computer

    Full text link
    The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip based device which can be used as a fundamental building block for a large scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction exhibiting high fault-tolerant thresholds.Comment: 14 Pages, 8 Figures, changes to the main text, new appendix adde
    corecore