48 research outputs found

    The role of microvesicles as biomarkers in the screening of colorectal neoplasm

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) is the second cause of cancer death worldwide. The role of circulating microvesicles as a screening tool is a novel, yet effective approach that warrants prioritised research. METHODS: In a two-gate diagnostic accuracy study, 35 patients with benign colorectal polyps (BCRP) (n = 16) and colorectal cancer (CRC) (n = 19) were compared to 17 age-matched healthy controls. Total annexin-V positive microvesicles and sub-populations positive for selected biomarkers relevant to bowel neoplasm were evaluated in patients' plasma using flow cytometry. Statistical methods including factor analysis utilising two component factors were performed to obtain optimal diagnostic accuracy of microvesicles in identifying patients with colorectal neoplasms. RESULTS: Total plasma microvesicles, and sub-populations positive for CD31, CD42a, CD31+/CD42a-, EPHB2, ICAM and LGR5 (component factor-1) were able to identify patients with BCRP and CRC with a receiver operator curve (AUC) accuracy of a 100% (95% CI: 100%-100%) and 95% (95% CI: 88%-100%), respectively. To identify patients with BCRP, a cut-off point value of component factor-1761 microvesicles/μl demonstrated a 100% sensitivity, specificity and negative predictive value (NPV) and a 93% positive predictive value (PPV). To identify patients with CRC, a cut-off value of component factor-1 3 439 microvesicles/μl demonstrated a 100% sensitivity, specificity and NPV and a 65% PPV. CEA+ microvesicles sub-population were significantly (p < 0.02) higher in CRC in comparison to BCRP. CONCLUSIONS: Microvesicles as biomarkers for the early and accurate detection of CRC is a simple and effective tool that yields a potential breakthrough in clinical management

    Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: a review of the literature

    Get PDF
    Histone 3 lysine 27 (H3K27) demethylation constitutes an important epigenetic mechanism of gene activation. It is mediated by the Jumonji C domain-containing lysine demethylases KDM6A and KDM6B, both of which have been implicated in a wide myriad of diseases, including blood and solid tumours, autoimmune and inflammatory disorders, and infectious diseases. Here, we review and summarise the pre-clinical evidence, both in vitro and in vivo, in support of the therapeutic potential of inhibiting H3K27-targeting demethylases, with a focus on the small-molecule inhibitor GSK-J4. In malignancies, KDM6A/B inhibition possesses the ability to inhibit proliferation, induce apoptosis, promote differentiation, and heighten sensitivity to currently employed chemotherapeutics. KDM6A/B inhibition also comprises a potent anti-inflammatory approach in inflammatory and autoimmune disorders associated with inappropriately exuberant inflammatory and autoimmune responses, restoring immunological homeostasis to inflamed tissues. With respect to infectious diseases, KDM6A/B inhibition can suppress the growth of infectious pathogens and attenuate the immunopathology precipitated by these pathogens. The pre-clinical in vitro and in vivo data, summarised in this review, suggest that inhibiting H3K27 demethylases holds immense therapeutic potential in many diseases

    Prostanoid receptors in GtoPdb v.2023.1

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [701]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [452]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors in GtoPdb v.2021.2

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [694]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2&#945;, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [448]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors in GtoPdb v.2023.1

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [701]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2&#945;, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [452]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostacyclin mimetics inhibit DRP1-mediated pro-proliferative mitochondrial fragmentation in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder, involving the remodelling of the small pulmonary arteries. Underlying this remodelling is the hyper-proliferation of pulmonary arterial smooth muscle cells within the medial layers of these arteries and their encroachment on the lumen. Previous studies have demonstrated an association between excessive mitochondrial fragmentation, a consequence of increased expression and post-translational activation of the mitochondrial fission protein dynamin-related protein 1 (DRP1), and pathological proliferation in PASMCs derived from PAH patients. However, the impact of prostacyclin mimetics, widely used in the treatment of PAH, on this pathological mitochondrial fragmentation remains unexplored. We hypothesise that these agents, which are known to attenuate the proliferative phenotype of PAH PASMCs, do so in part by inhibiting mitochondrial fragmentation. In this study, we confirmed the previously reported increase in DRP1-mediated mitochondrial hyper-fragmentation in PAH PASMCs. We then showed that the prostacyclin mimetic treprostinil signals via either the Gs-coupled IP or EP2 receptor to inhibit mitochondrial fragmentation and the associated hyper-proliferation in a manner analogous to the DRP1 inhibitor Mdivi-1. We also showed that treprostinil recruits either the IP or EP2 receptor to activate PKA and induce the phosphorylation of DRP1 at the inhibitory residue S637 and inhibit that at the stimulatory residue S616, both of which are suggestive of reduced DRP1 fission activity. Like treprostinil, MRE-269, an IP receptor agonist, and butaprost, an EP2 receptor agonist, attenuated DRP1-mediated mitochondrial fragmentation through PKA. We conclude that prostacyclin mimetics produce their anti-proliferative effects on PAH PASMCs in part by inhibiting DRP1-mediated mitochondrial fragmentation

    Prostanoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [644]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2&#945;, PGH2, prostacyclin [PGI2] and thromboxane A2. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    International Union of Basic and Clinical Pharmacology: Differences and similarities between human and rodents concerning prostaglandin EP1-4 and IP receptors: Specific roles in pathophysiologic conditions

    Get PDF
    Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI(2)) and PGE(2) are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI(2) and PGE(2) exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E-2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies

    Prostanoid receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [661]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2&#945;, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [423]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [659]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2&#945;, PGH2, prostacyclin [PGI2] and thromboxane A2. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies
    corecore