461 research outputs found
A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes
Reductive dissolution is a promising processing route for single walled carbon nanotubes (SWCNTs) that avoids the damage caused by ultrasonication and aggressive oxidation whilst simultaneously allowing access to a wealth of SWCNT functionalisation reactions. Here, reductive dissolution has been simplified to a single one-pot reaction through the use of sodium naphthalide in dimethylacetamide allowing direct synthesis of SWCNT Na(+) solutions. Gram quantities of SWCNTs can be dissolved at concentrations over 2 mg mL(–1). These reduced SWCNT solutions can easily be functionalised through the addition of alkyl halides; reducing steric bulk of the grafting moiety and increasing polarisability of the leaving group increases the extent of functionalisation. An optimised absolute sodium concentration of 25 mM is shown to be more important than carbon to metal ratio in determining the maximum degree of functionalisation. This novel dissolution system can be modified for use as a non-destructive purification route for raw SWCNT powder by adjusting the degree of charging to dissolve carbonaceous impurities, catalyst particles and defective material, before processing the remaining SWCNTs
Rapid detection of free and bound toxins using molecularly imprinted silica/graphene oxide hybrids dagger
Rapid, selective detection of biological analytes is necessary for early diagnosis, but is often complicated by the analytes being bound to proteins and the lack of fast and reliable systems available for their direct assessment. Here, a cheap, easily-assembled molecularly imprinted silica/graphene oxide hybrid is developed, which can selectively detect toxins linked to early-stage chronic kidney disease, down to femtomolar concentrations within 5 minutes. The hybrid material is capable of simultaneously and separately measuring free and bound analytes using with an ultra-low limit of detection in the femtomolar range, and uses processes intrinsically adaptable to any charged molecular analy
High-Speed, Heavy-Load, and Direction-Controllable Photothermal Pneumatic Floating Robot.
Light-fueled actuators are promising in many fields due to their contactless, easily controllable, and eco-efficiency features. However, their application in liquid environments is complicated by the existing challenges of rapid deformation in liquids, light absorption of the liquid media, and environmental contamination. Here, we design a photothermal pneumatic floating robot (PPFR) using a boat-paddle structure. Light energy is converted into thermal energy of air by an isolated photothermal composite, which is then converted into mechanical energy of liquid to drive the movement of PPFRs. By understanding and controlling the photothermal actuation, the PPFR can achieve an average velocity of 13.1 mm s-1 in water and can be modified for remote on-demand differential steering and self-sustained oscillation. The PPFR may be modified to provide a lifting mechanism, capable of moving 4 times the PPFR mass. Various shapes and materials are suitable for the PPFR, providing a platform for liquid surface transporting, water sampling, pollutant collecting, underwater photography, and photocontrol robots in shallow water
Nafion Matrix and Ionic Domain Tuning for High-Performance Composite Proton Exchange Membranes
Although proton exchange membranes (PEMs) are widely deployed in an array of commercial applications, limitations linked to their proton conductivity, water retention, and gas permeability still limit ultimate device performance. While ex situ studies have shown additives can enhance membrane stability and mass transport, to date few have demonstrated that these performance enhancements are maintained when tested in commercially relevant electrochemical technologies, such as fuel cells or electrolyzers. Herein, a new multifunctional additive, 2D poly(triazine imide) (PTI), is demonstrated for composite PEMs, which is shown to boost proton conductivity by 37% under optimal high relative humidity (RH) conditions and 67% at low RHs. PTI also enables major improvements (over 55%) in both current and power densities in industrially relevant PEM fuel cells (PEMFCs). Most importantly, in situ and ex situ characterization suggests that the enhanced performance is due to polymer aggregate-PTI clusters that form with increasing 2D character and improved long-range connectivity, while acid-base interactions with pyridinic nitrogen facilitate the critical proton hopping mechanism at all RHs. Hence, this work offers both a new membrane concept with proven benefits for important electrochemical technologies, as well as design principles for future optimization of proton transport and water management within PEMs
Grafting from versus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate)
Graphene nanoplatelets (GNP) were exfoliated using a nondestructive chemical reduction method and subsequently decorated with polymers using two different approaches: grafting from and grafting to. Poly(methyl methacrylate) (PMMA) with varying molecular weights was covalently attached to the GNP layers using both methods. The grafting ratios were higher (44.6% to 126.5%) for the grafting from approach compared to the grafting to approach (12.6% to 20.3%). The products were characterized using thermogravimetric analysis–mass spectrometry (TGA-MS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The grafting from products showed an increase in the grafting ratio and dispersibility in acetone with increasing monomer supply; on the other hand, due to steric effects, the grafting to products showed lower absolute grafting ratios and a decreasing trend with increasing polymer molecular weight. The excellent dispersibility of the grafting from functionalized graphene, 900 μg/mL in acetone, indicates an increased compatibility with the solvent and the potential to increase graphene reinforcement performance in nanocomposite applications
Supramolecular hydrogen bond enables Kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight
We report fabrication of photoresponsive liquid-crystalline polymers reinforced with highly-oriented Kapton nanofibers with a supramolecular hydrogen bonding interface. To enhance the interfacial strength, hydroxyl groups are introduced into the side chain of azobenzene-containing liquid-crystalline polymers, forming hydrogen bonds with the Kapton nanofibers, directly imaged by nano-FTIR. Interestingly, the composite film exhibits the hierarchical structure of dragonfly wings, while demonstrating relatively high elastic modulus (1.64 GPa), reduced modulus (72.8 GPa), and nanohardness (4.5 GPa); 20–30 times higher than natural dragonfly wings. The enhanced mechanical performance and bilayer structure enables the composite film to exhibit rapid photoresponsive behaviors independent of the direction of illumination, due to an unconventional deformation mechanism arising from the interactions at the fiber-polymer interface. In addition, the flapping frequency and bending angle of the composite films can be continuously tuned for a single device (0.1–5 Hz, and 1.5–15.8°) by modifying the pulsed photoirradiation. The composite films are assembled into an artificial dragonfly device, and the light-driven flight aerodynamics are demonstrated in windy conditions. These not only provide a solution of micro-aircraft wings, but also offer a good bionic model for emulating dragonfly wings
Reactive coagulation of single-walled carbon nanotubes for tougher composites - Solution processing and assembly
The injection of reduced single-walled carbon nanotubes into a coagulation bath of polyvinyl chloride (PVC) solution leads to the formation of nanocomposite fibres with polymer covalently bound to the nanotubes. The influence of PVC concentration and molecular weight, and the extrusion diameter on the nanocomposite fibre tensile properties and composition have been examined. The nanocomposite fibres produced have strengths as high as 480 MPa and modulus of 15 GPa, making them the strongest and stiffest PVC composites recorded to date
Grafting from versus grafting to approaches for the functionalisation of graphene nanoplatelets with poly(methyl methacrylate)
Graphene nanoplatelets (GNP) were exfoliated using a nondestructive chemical reduction method and subsequently decorated with polymers using two different approaches: grafting from and grafting to. Poly(methyl methacrylate) (PMMA) with varying molecular weights was covalently attached to the GNP layers using both methods. The grafting ratios were higher (44.6% to 126.5%) for the grafting from approach compared to the grafting to approach (12.6% to 20.3%). The products were characterized using thermogravimetric analysis–mass spectrometry (TGA-MS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The grafting from products showed an increase in the grafting ratio and dispersibility in acetone with increasing monomer supply; on the other hand, due to steric effects, the grafting to products showed lower absolute grafting ratios and a decreasing trend with increasing polymer molecular weight. The excellent dispersibility of the grafting from functionalized graphene, 900 μg/mL in acetone, indicates an increased compatibility with the solvent and the potential to increase graphene reinforcement performance in nanocomposite applications
The importance of particle dispersion in electrical treeing and breakdown in nano-filled epoxy resin
The addition of nano-fillers has been widely proposed as a method to enhance the dielectric properties of high voltage polymeric insulation, though there are mixed reports in the literature. Here the potential of silica nano-particles to extend the time to failure specifically through resistance to electrical tree growth in epoxy resin is determined. The benefit of silane treating the nano-particles before compounding is clearly established with regard to slowing tree growth and subsequent time to failure. The growth of trees in needle-plane samples is measured in the laboratory with loadings of 1, 3 and 5 wt% nano-filler. In all cases the average times to failure are extended, but silane treatment of the nano-particles prior to compounding yields much superior results. The emergence of a pronounced inception time before tree growth is also noted for the higher-filled, silane-treated cases. The average time to failure of silane-treated 5 wt% filled material was 28 times that of the unfilled resin. The improvement in performance between the nanocomposites with untreated and treated fillers is attributed to fewer agglomerations and improved dispersion of the filler in the treated cases. Measurements of Partial Discharge (PD) indicated significant differences in PD patterns during the growth of trees in the treated and untreated cases. This distinction may provide a quality control method for monitoring materials. In particular, long periods in which PDs were not measured were observed in the silane-treated cases. Visual imaging of tree growth in the unfilled material allowed the changing nature of the tree from fine to tree to dark tree to be observed as it grew. Corresponding PD measurements suggest the dark tree is gradually becoming conductive, and that growth of maximum PD measured is dependent on the relative rates of the growth of the tree and its carbonization. X-ray computer tomography identified significant differences in average tree channel diameters (a reduction from 2.8 µm to 2.0 µm for 1 wt% and 3 wt% cases). This implies that in addition to tree length changes, evaporated tree volumes also change and may explain the change in partial discharge characteristics observed
- …