2,343 research outputs found

    Weak antilocalization in epitaxial graphene: evidence for chiral electrons

    Full text link
    Transport in ultrathin graphite grown on silicon carbide is dominated by the electron-doped epitaxial layer at the interface. Weak anti-localization in 2D samples manifests itself as a broad cusp-like depression in the longitudinal resistance for magnetic fields 10 mT<B<< B < 5 T. An extremely sharp weak-localization resistance peak at B=0 is also observed. These features quantitatively agree with graphene weak-(anti)localization theory implying the chiral electronic character of the samples. Scattering contributions from the trapped charges in the substrate and from trigonal warping due to the graphite layer on top are tentatively identified. The Shubnikov-de Haas oscillations are remarkably small and show an anomalous Berry's phase.Comment: 5 pages, 4 figures. Minor change

    SELECTING ADS RELEVANT TO LIVE EVENTS TO AN ONLINE AUDIENCE

    Get PDF
    If an advertiser wants to select ads for an online audience for a relevant event, the selection and audience specifications need to be manually created. Advertisers have to find the set of relevant keywords, a specified audience for the event , and an event time window, in order to create the ad campaign for their ads to show during the event. This manual process can be complex and time consuming, and advertisers may not be able to determine the right selection criteria or audience for the event. Furthermore, while some events may be identified well in advance, advertisers may not react as quickly to new events that are relevant to their ads. Additionally, advertisers may not be able to determine a proper window for presenting the ad. A search provider may be able to provide live, real-time answers for search queries related to live events that users are interested in, such as sports, weather, finance, movie show times, and more

    Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

    Get PDF
    Background: Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn). Results: Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%(tot. xyl) (wild-type Tx-Xyn) to 18.6% to 20.4%(tot. xyl). Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500), thus procuring increases in overall wheat straw hydrolysis. Conclusions: Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i) improved ligand binding in a putative secondary binding site, (ii) the diminution of surface hydrophobicity, and/or (iii) the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier

    Infection with a Brazilian isolate of Zika virus generates RIG‐I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signalling

    Get PDF
    Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signalling protein (MAVS), implicating RIG‐I‐like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG‐I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signalling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signalling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signalling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signalling downstream of RLRs and IFNAR

    Noninvasive photoacoustic sentinel lymph node mapping using Au nanocages as a lymph node tracer in a rat model

    Get PDF
    Sentinel lymph node biopsy (SLNB) has been widely performed and become the standard procedure for axillary staging in breast cancer patients. In current SLNB, identification of SLNs is prerequisite, and blue dye and/or radioactive colloids are clinically used for mapping. However, these methods are still intraoperative, and especially radioactive colloids based method is ionizing. As a result, SLNB is generally associated with ill side effects. In this study, we have proposed near-infrared Au nanocages as a new tracer for noninvasive and nonionizing photoacoustic (PA) SLN mapping in a rat model as a step toward clinical applications. Au nanocages have great features: biocompatibility, easy surface modification for biomarker, a tunable surface plasmon resonance (SPR) which allows for peak absorption to be optimized for the laser being used, and capsule-type drug delivery. Au nanocage-enhanced photoacoustic imaging has the potential to be adjunctive to current invasive SLNB for preoperative axillary staging in breast cancer patients

    Near-Infrared Gold Nanocages as a New Class of Tracers for Photoacoustic Sentinel Lymph Node Mapping on a Rat Model

    Get PDF
    This work demonstrated the use of Au nanocages as a new class of lymph node tracers for noninvasive photoacoustic (PA) imaging of a sentinel lymph node (SLN). Current SLN mapping methods based on blue dye and/or nanometer-sized radioactive colloid injection are intraoperative due to the need for visual detection of the blue dye and low spatial resolution of Geiger counters in detecting radioactive colloids. Compared to the current methods, PA mapping based on Au nanocages shows a number of attractive features: noninvasiveness, strong optical absorption in the near-infrared region (for deep penetration), and the accumulation of Au nanocages with a higher concentration than the initial solution for the injection. In an animal model, these features allowed us to identify SLNs containing Au nanocages as deep as 33 mm below the skin surface with good contrast. Most importantly, compared to methylene blue Au nanocages can be easily bioconjugated with antibodies for targeting specific receptors, potentially eliminating the need for invasive axillary staging procedures in addition to providing noninvasive SLN mapping

    Near-Infrared Gold Nanocages as a New Class of Tracers for Photoacoustic Sentinel Lymph Node Mapping on a Rat Model

    Get PDF
    This work demonstrated the use of Au nanocages as a new class of lymph node tracers for noninvasive photoacoustic (PA) imaging of a sentinel lymph node (SLN). Current SLN mapping methods based on blue dye and/or nanometer-sized radioactive colloid injection are intraoperative due to the need for visual detection of the blue dye and low spatial resolution of Geiger counters in detecting radioactive colloids. Compared to the current methods, PA mapping based on Au nanocages shows a number of attractive features: noninvasiveness, strong optical absorption in the near-infrared region (for deep penetration), and the accumulation of Au nanocages with a higher concentration than the initial solution for the injection. In an animal model, these features allowed us to identify SLNs containing Au nanocages as deep as 33 mm below the skin surface with good contrast. Most importantly, compared to methylene blue Au nanocages can be easily bioconjugated with antibodies for targeting specific receptors, potentially eliminating the need for invasive axillary staging procedures in addition to providing noninvasive SLN mapping

    Tuning the High-Pressure Phase Behaviour of Highly Compressible Zeolitic Imidazolate Frameworks: From Discontinuous to Continuous Pore Closure by Linker Substitution

    Get PDF
    The high‐pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF‐62 family with the chemical composition M(im)(2−x )(bim)(x) is presented (M(2+)=Zn(2+), Co(2+); im(−)=imidazolate; bim(−)=benzimidazolate, 0.02≀x≀0.37). High‐pressure powder X‐ray diffraction shows that the materials contract reversibly from an open pore ( op ) to a closed pore ( cp ) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim(−) fraction (x) reinforces the framework, leading to an increased threshold pressure for the op ‐to‐ cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op ‐to‐ cp transition (first order) changes to an unusual continuous transition (second order) for x≄0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure‐switchable devices, membranes, and actuators
    • 

    corecore