59 research outputs found
Caractérisation moléculaire et fonctionnelle de la protéine DYW1 dans le complexe d'édition chloroplastique d'Arabidopsis thaliana
Dans les organites des plantes, l édition de l ARN consiste majoritairement en une désamination de cytidines à des sites spécifiques de l ARNm. Trente-quatre sites d édition ont été découverts dans les transcrits chloroplastiques d Arabidopsis thaliana et plus de 500 dans les transcrits mitochondriaux. Depuis 2005, beaucoup de facteurs d édition ont été trouvés. La majorité de ces protéines appartiennent à la famille des PentatricoPeptide Repeat (PPR). Parmi ces PPR, certaines contiennent un domaine DYW possédant de faibles similarités avec les cytidines désaminases (CDA), alors que d autres en sont dénuées, générant un doute sur le fait qu il ait une activité CDA. Le gène At1g47580 (DYW1) code une protéine unique chez Arabidopsis thaliana contenant seulement un domaine DYW. Il a été proposé que DYW1 puisse interagir avec les PPR ne contenant pas de domaine DYW, pour former un hétérodimère, capable d éditer spécifiquement un site. En accord avec cette hypothèse, nous avons montré que DYW1 agissait sur le même site d édition que CRR4, une PPR sans domaine DYW, et que ces protéines interagissaient in vivo. De plus, nous avons montré que DYW1 remplaçait les parties manquantes de CRR4 pour l édition. Pour obtenir plus d informations sur la fonction du domaine DYW, des mutations ont été introduites dans DYW1. Nous avons montré que la signature CDA dans les protéines DYW était essentielle à l édition de l ARN ainsi qu à l interaction avec les ions zinc. Les données sont en accord avec l hypothèse d une activité CDA dans le domaine DYW. Cependant, aucune activité CDA n a pu être mise à jour in vitro. Il est vraisemblable qu au moins un cofacteur doive encore être identifié.In plant organelles, RNA editing mostly takes the form of conversions of cytidines to uridines at specific sites in mRNAs. Thirty-four editing sites have been found in Arabidopsis thaliana chloroplast transcripts and more than 500 sites in mitochondrial transcripts. Since 2005, lots of proteins have been found to act as RNA editing factors. Most of these proteins belong to the PentatricoPeptide Repeat (PPR) family. Amongst these PPR, some contain a DYW domain with weak similarity to cytidine deaminases (CDA), whilst others lack such a domain, creating doubts about whether this domain is required for editing. The gene At1g47580 (named DYW1) encodes a protein in Arabidopsis thaliana that contains only a DYW domain. Our initial hypothesis was that DYW1 might interact with PPR proteins that lack a DYW domain, in order to form a heterodimer, able to perform site-specific editing. In accordance with this hypothesis, we discovered that DYW1 is involved in editing the same site as CRR4, a PPR lacking a DYW domain, and that these two proteins interact together in vivo. Moreover, we showed that DYW1 replaces all the missing parts of CRR4 for editing. So, other partners need to be hypothesized for other DYW-lacking editing factors if this hypothesis is to be generalized. The highly conserved residues making up the CDA signature in DYW proteins were found to be essential for RNA editing and are also required for zinc binding, which is a known characteristic of CDAs. All the data so far are consistent with the DYW domain being (part of) a CDA activity; nevertheless, no CDA activity could be detected in vitro. It is likely that at least one required cofactor remains to be identified.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
Identification des protéines PPR impliquées dans l'épissage des ARN messagers dans les chloroplastes et les mitochondries chez Arabidopsis Thaliana
Le mécanisme d épissage dans les organites est décrit comme étant l ancêtre du spliceosome nucléaire. Cependant même si les protéines composant ce dernier sont bien connues, seulement quelques facteurs d épissage ont été identifiés et caractérisés dans les chloroplastes et les mitochondries. Beaucoup de protéines ayant la faculté de se lier à l ARN ont acquis des fonctions dans l épissage, en effet un certain nombre de protéines sans véritable lien ont un rôle essentiel, avec différents degrés de spécificité dans l épissage de la plupart des introns chloroplastiques chez les plantes. La plus grande famille de protéines se liant à l ARN est la famille des protéines à domaines pentatricopetide repeat (PPR). Ces protéines sont impliquées dans la plupart des processus post-transcriptionnels dans les organites. En 2006, parmi les centaines de protéines PPR décrites chez les plantes, seulement une PPR avait été décrite comme nécessaire à l épissage d un intron. Ainsi, PPR4 est absolument et spécifiquement nécessaire pour l épissage en trans de l intron 1 de rps12 dans les plastes (Schmitz-Linneweber et al., 2006), suggérant que d autres protéines PPR pourraient être impliquées dans l épissage des ARN des organites. Le sujet de cette thèse porte sur la caractérisation d autres protéines PPR impliquées dans ce processus. En utilisant des approches de génétique inverse et des outils mis en place dans le cadre de la thèse afin de détecter des défauts d épissage par PCR quantitative, sept nouvelles PPRs impliquées dans l épissage d un certain nombre d introns dans les plastes et les mitochondries ont pu être caractérisées. Dans l optique de rechercher si des protéines PPR, impliquées dans l épissage mais aussi dans l édition des ARN, interagissent avec d autres protéines, des approches de TAP-TAG ont été réalisées et sont également présentées dans ce manuscrit. L identification de partenaires protéiques pour 3 PPRs impliquées, nous a ainsi permis de redessiner nos modèles et d émettre de nouvelles hypothèses. Enfin, une dernière partie est consacrée à la découverte d isoformes d épissage pour des gènes PPR sans introns. Phénomène qui permettrait de réguler l expression des gènes PPR, et/ou d augmenter la diversité des protéines PPR.The RNA splicing mechanism in organelles is described to be ancestral to that of the nuclear spliceosome. However, whereas this last complex is well known, only very few splicing factors have been identified and characterized in chloroplasts and mitochondria. Many RNA binding proteins have acquired roles in RNA splicing, and indeed a variety of often unrelated RNA binding proteins have essential functions in splicing of many plastid introns in plants, with varying degrees of specificity. The largest family of RNA binding proteins in plant organelles is the pentatricopeptide repeat (PPR) family. PPR proteins are involved in diverse post-transcriptional processes in organelles. In 2006, among hundreds of higher plant proteins of this family, only one was described as being required for a splicing event - PPR4 was shown to be absolutely and specifically required for the trans-splicing of the rps12 intron 1 in plastids (Schmitz-Linneweber et al., 2006). The main purpose of this PhD thesis was to characterize other PPR proteins involved in this process. By using a reverse genetics approach and by developing tools for the detection of splicing defects, seven new PPR proteins involved in RNA splicing of a subset of chloroplast or mitochondria introns have been characterized. In parallel, in order to characterize proteins involved in PPR-containing complexes, a TAP-TAG approach has been carried out on a few PPR proteins involved in splicing or editing of organellar RNA. The identification of partner proteins of 3 PPR proteins allows us to draw new mechanistic models and new hypotheses. Finally, the final part of the manuscript describes the discovery of splicing isoforms of PPR-encoding mRNAs. Alternative splicing may be involved in regulation of PPR gene expression and/or in increasing the diversity of the PPR protein family.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
Limiting etioplast gene expression induces apical hook twisting during skotomorphogenesis of Arabidopsis seedlings
When covered by a layer of soil, seedling development follows a dark-specific program (skotomorphogenesis). In the dark, seedlings consist of small, non-green cotyledons, a long hypocotyl, and an apical hook to protect meristematic cells. We recently highlighted the role played by mitochondria in the high energy-consuming reprogramming of Arabidopsis skotomorphogenesis. Here, the role played by plastids, another energy-supplying organelle, in skotomorphogenesis is investigated. This study was conducted in dark conditions to exclude light signals so as to better focus on those produced by plastids. It was found that limitation of plastid gene expression (PGE) induced an exaggerated apical hook bending. Inhibition of PGE was obtained at the levels of transcription and translation using the antibiotics rifampicin (RIF) and spectinomycin, respectively, as well as plastid RPOTp RNA polymerase mutants. RIF-treated seedlings also showed expression induction of marker nuclear genes for mitochondrial stress, perturbation of mitochondrial metabolism, increased ROS levels, and an augmented capacity of oxygen consumption by mitochondrial alternative oxidases (AOXs). AOXs act to prevent overreduction of the mitochondrial electron transport chain. Previously, we reported that AOX1A, the main AOX isoform, is a key component in the developmental response to mitochondrial respiration deficiency. In this work, we suggest the involvement of AOX1A in the response to PGE dysfunction and propose the importance of signaling between plastids and mitochondria. Finally, it was found that seedling architecture reprogramming in response to RIF was independent of canonical organelle retrograde pathways and the ethylene signaling pathway
Identification of the RNA editing enzyme in plant organelles
Chez les plantes, l édition des ARN dans les organites conduit principalement à des conversions de cytidines en uraciles. Des protéines de la famille PPR (pentatricopeptide repeat) sont impliquées dans ce processus. Mon travail a permis de montrer que le domaine DYW présent chez certaines protéines PPR présente des homologies avec le site catalytique de cytidines désaminases et que sa distribution phylogénétique corrèle avec celle de l édition dans la lignée verte. Par ailleurs, chez A. thaliana, l analyse de mutants affectés dans l expression du gène AtDYW1, codant une protéine uniquement constituée du domaine DYW et d un peptide signal pour les organites, a révélé l existence de plantules au développement très affecté et pour lesquelles plusieurs défauts d édition dans des ARNm chloroplastiques ont pu être caractérisés. Pris ensemble, ces éléments suggèrent que le domaine DYW ou la protéine AtDYW1 pourraient être l enzyme centrale catalysant les réactions d édition.RNA editing in plants organelle transcripts is a proccess leading to specific post-transcriptional pyrimidine interconversions (mainly C-to-U). Recently a few pentratricopeptide repeat (PPR) proteins were described to be essential in this process. During my PhD, I found that the DYW domain of PPR proteins show similarities with the active site of cytidine deaminases, and that the phylogenetic distribution of this domain is strictly correlated with RNA editing in green plants. In addition, in A. thaliana, the AtDYW1 gene encodes a protein made of a targeting signal to the organelles and a DYW domain. Mutant lines in which this gene has been targeted for knock-down exhibit strongly altered development. In the affected seedlings, AtDYW1 gene expression is specifically decreased, and several editing defects in plastids transcripts were characterized.Taken together, these data support the hypothesis that the DYW domain and the AtDYW1 protein may be the central enzyme in the RNA editing.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences
doi: 10.1002/pmic.200300776International audienc
Bioinformatic analysis of chloroplast gene expression and RNA posttranscriptional maturations using RNA Sequencing
International audienceSequencing of total RNA enables the study of the whole plant transcriptome resulting from the simultaneous expression of the three genomes of plant cells (located in the nucleus, mitochondrion and chloroplast). While commonly used for the quantification of the nuclear gene expression, this method remains complex and challenging when applied to organellar genomes and/ or when used to quantify posttranscriptional RNA maturations. Here we propose a complete bioinformatical and statistical pipeline to fully characterize the differences in the chloroplast transcriptome between two conditions. Experimental design as well as bioinformatics and statistical analyses are described in order to quantify both gene expression and RNA posttranscriptional maturations, i.e., RNA splicing, editing, and processing, and identify statistically significant differences
Plant protein interactomes
Protein-protein interactions are a critical element of biological systems, and the analysis of interaction partners can provide valuable hints about unknown functions of a protein. In recent years, several large-scale protein interaction studies have begun to unravel the complex networks through which plant proteins exert their functions. Two major classes of experimental approaches are used for protein interaction mapping: analysis of direct interactions using binary methods such as yeast two-hybrid or split ubiquitin, and analysis of protein complexes through affinity purification followed by mass spectrometry. In addition, bioinformatics predictions can suggest interactions that have evaded detection by other methods or those of proteins that have not been investigated. Here we review the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks. We present experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large-scale plant interactome network maps
- …