35 research outputs found

    A sub-group of patients with hospital-acquired pneumonia do not require broad-spectrum gram-negative antimicrobial coverage

    Get PDF
    C.D.R. is supported by an Edinburgh Clinical Academic Track (ECAT)/Wellcome Trust PhD Training Fellowship for Clinicians award (214178/Z/18/Z).Among 200 patients developing hospital-acquired pneumonia (HAP) outside the intensive care unit, 61% were treated empirically without broad-spectrum Gram-negative coverage, with clinical cure in 69.7%. Lower disease severity markers (systemic inflammatory response syndrome, hypoxia, tachypnoea, neutrophilia) and the absence of diabetes mellitus and prior doxycycline treatment (but not the time to HAP onset) identified patients not requiring broad-spectrum Gram-negative coverage.Publisher PDFPeer reviewe

    Performance status: A key factor in predicting mortality in the first wave of COVID-19 in South-East Scotland

    Get PDF
    BACKGROUND: COVID-19 mortality risk factors have been established in large cohort studies; long-term mortality outcomes are less documented. METHODS: We performed multivariable logistic regression to identify factors associated with in-patient mortality and intensive care unit (ICU) admission in symptomatic COVID-19 patients admitted to hospitals in South-East Scotland from 1st March to 30th June 2020. One-year mortality was reviewed. RESULTS: Of 726 patients (median age 72; interquartile range: 58–83 years, 55% male), 104 (14%) required ICU admission and 199 (27%) died in hospital. A further 64 died between discharge and 30th June 2021 (36% overall 1-year mortality). Stepwise logistic regression identified age >79 (odds ratio (OR), 4.77 (95% confidence interval (CI), 1.96–12.75)), male sex (OR, 1.83 (95% CI, 1.21–2.80)) and higher European Cooperative Oncology Group/World Health Organization performance status as associated with higher mortality risk. DISCUSSION: Poor functional baseline was the predominant independent risk factor for mortality in COVID-19. More than one-third of individuals had died by 1 year following admission

    Acquisition of naturally occurring antibody responses to recombinant protein domains of Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Methods: Using recombinant proteins corresponding to five domains of the expressed A4 var gene, A4 PfEMP1, the naturally occurring antibody response was assessed, by ELISA, to each domain in serum samples obtained from individuals resident in two communities of differing malaria transmission intensity on the Kenyan coast. Using flow cytometry, the correlation in individual responses to each domain with responses to intact A4-infected erythrocytes expressing A4 PfEMP1 on their surface as well as responses to two alternative parasite clones and one clinical isolate was assessed. Results: Marked variability in the prevalence of responses between each domain and between each transmission area was observed, as wasa strong correlation between age and reactivity with some but not all domains. Individual responses to each domain varied strikingly, with some individuals showing reactivity to all domains and others with no reactivity to any, this was apparent at all age groups. Evidence for possible cross-reactivity in responses to the domain DBL4γ was found. Conclusion: Individuals acquire antibodies to surface expressed domains of a highly variant protein. The finding of potential cross-reactivity in responses to one of these domains is an important initial finding in the consideration of potential vaccine targets

    Diagnostic performance of the combined nasal and throat swab in patients admitted to hospital with suspected COVID-19.

    Get PDF
    BACKGROUND: Accurate diagnosis in patients with suspected coronavirus disease 2019 (COVID-19) is essential to guide treatment and limit spread of the virus. The combined nasal and throat swab is used widely, but its diagnostic performance is uncertain. METHODS: In a prospective, multi-centre, cohort study conducted in secondary and tertiary care hospitals in Scotland, we evaluated the combined nasal and throat swab with reverse transcriptase-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in consecutive patients admitted to hospital with suspected COVID-19. Diagnostic performance of the index and serial tests was evaluated for a primary outcome of confirmed or probable COVID-19, and a secondary outcome of confirmed COVID-19 on serial testing. The diagnosis was adjudicated by a panel, who recorded clinical, laboratory and radiological features blinded to the test results. RESULTS: We enrolled 1368 consecutive patients (median age 68 [interquartile range, IQR 53-80] years, 47% women) who underwent a total of 3822 tests (median 2 [IQR 1-3] tests per patient). The primary outcome occurred in 36% (496/1368), of whom 65% (323/496) and 35% (173/496) had confirmed and probable COVID-19, respectively. The index test was positive in 255/496 (51%) patients with the primary outcome, giving a sensitivity and specificity of 51.4% (95% confidence interval [CI] 48.8 to 54.1%) and 99.5% (95% CI 99.0 to 99.8%). Sensitivity increased in those undergoing 2, 3 or 4 tests to 60.1% (95% CI 56.7 to 63.4%), 68.3% (95% CI 64.0 to 72.3%) and 77.6% (95% CI 72.7 to 81.9%), respectively. The sensitivity of the index test was 78.9% (95% CI 74.4 to 83.2%) for the secondary outcome of confirmed COVID-19 on serial testing. CONCLUSIONS: In patients admitted to hospital, a single combined nasal and throat swab with RT-PCR for SARS-CoV-2 has excellent specificity, but limited diagnostic sensitivity for COVID-19. Diagnostic performance is significantly improved by repeated testing

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART) : a multicentre, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    Funding Information: ISM reports research grants from Menarini, EMA, Sanofi, Health Data Research UK, the British Heart Foundation, and Innovative Medicines Initiative; institutional consultancy income from AstraZeneca outside the submitted work; and personal income from AstraZeneca and Amgen outside the submitted work. TMM reports grants from Menarini/Ipsen/Teijin and Merck Sharp & Dohme outside the submitted work, and personal income for consultancy from Novartis and AstraZeneca outside the submitted work, and is a trustee of the Scottish Heart Arterial Risk Prevention Society. AGB reports personal income from Novartis, Mylan, AstraZeneca, Bayer, Daiichi-Sankyo, Boehringer, Pfizer, Galderma, Zambon, and Novo-Nordisk outside the submitted work. ADS and the University of Dundee hold a European patent for the use of xanthine oxidase inhibitors in treating chest pain in angina pectoris. AW declares personal income for consultancy from AbbVie, Akcea, Albireo, Alexion, Allergan, Amarin, Apsara, Arena, Astellas, AstraZeneca, Autolus, Bayer, Biocryst, Biogen, Biomarin, Bristol Myers Squibb, Boehringer Ingelheim, Calico, Celgene, Chiesi, Daiichi Sankyo, Diurnal, Elsai, Eli Lilly, Ferring, Galapagos, Gedeon Richter, Gilead, GlaxoSmithKline, GW Pharma, Idorsia, Incyte, Intercept, Ionis, Ipsen, Janssen, Jazz, Jcyte, Kite Gilead, LEK, Leo Pharma, Les Laboratoires Servier, Lundbeck, Merck (Merck Sharp & Dohme), Merck-Serono, Mitenyi, Mundibiopharma, Mustang Bio, Mylan, Myovant, Norgine, Novartis, Novo Nordisk, Orchard, Paion, Pfizer, Pierre Fabre, PTC, RegenXBio, Rhythm, Sanofi, Santen, Sarepta, SeaGen, Shionogi, Sigmatec, SOBI, Takeda, Tanaya, UCB, and Vertex outside the submitted work. JST declares research funding from the UK National Institute for Health and Care Research (NIHR) and NHS England outside the submitted work and membership of a UK National Institute for Health and Care Excellence guideline committee on management of atrial fibrillation. All other authors declare no competing interests. Funding Information: This study was funded by the NIHR Health Technology Assessment programme (HTA 11/36/41 to ISM, IF, CJH, LW, ADS, AGB, AJA, AW, JST, and TMM). The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care. The study was supported by the Scottish Primary Care Research Network, Support for Science Scotland (Grampian, Highlands, Tayside, Fife, Forth Valley, Greater Glasgow and Clyde, Lothian, Ayrshire and Arran, Dumfries and Galloway, and Lanarkshire), and the NIHR Local Clinical Research Networks (East Midlands, West Midlands, Eastern, North Thames, Yorkshire and Humber, North East and North Cumbria, North West Coast, Kent, Surrey and Sussex, and South West Peninsula), which assisted with recruitment and other study activities. We thank Public Health Scotland and NHS Digital for providing data linkage. We thank all the participants, physicians, nurses, and other staff who participated in the ALL-HEART study. Funding Information: This study was funded by the NIHR Health Technology Assessment programme (HTA 11/36/41 to ISM, IF, CJH, LW, ADS, AGB, AJA, AW, JST, and TMM). The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care. The study was supported by the Scottish Primary Care Research Network, Support for Science Scotland (Grampian, Highlands, Tayside, Fife, Forth Valley, Greater Glasgow and Clyde, Lothian, Ayrshire and Arran, Dumfries and Galloway, and Lanarkshire), and the NIHR Local Clinical Research Networks (East Midlands, West Midlands, Eastern, North Thames, Yorkshire and Humber, North East and North Cumbria, North West Coast, Kent, Surrey and Sussex, and South West Peninsula), which assisted with recruitment and other study activities. We thank Public Health Scotland and NHS Digital for providing data linkage. We thank all the participants, physicians, nurses, and other staff who participated in the ALL-HEART study. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licensePeer reviewedPublisher PD

    Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    BACKGROUND: Allopurinol is a urate-lowering therapy used to treat patients with gout. Previous studies have shown that allopurinol has positive effects on several cardiovascular parameters. The ALL-HEART study aimed to determine whether allopurinol therapy improves major cardiovascular outcomes in patients with ischaemic heart disease. METHODS: ALL-HEART was a multicentre, prospective, randomised, open-label, blinded-endpoint trial done in 18 regional centres in England and Scotland, with patients recruited from 424 primary care practices. Eligible patients were aged 60 years or older, with ischaemic heart disease but no history of gout. Participants were randomly assigned (1:1), using a central web-based randomisation system accessed via a web-based application or an interactive voice response system, to receive oral allopurinol up-titrated to a dose of 600 mg daily (300 mg daily in participants with moderate renal impairment at baseline) or to continue usual care. The primary outcome was the composite cardiovascular endpoint of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death. The hazard ratio (allopurinol vs usual care) in a Cox proportional hazards model was assessed for superiority in a modified intention-to-treat analysis (excluding randomly assigned patients later found to have met one of the exclusion criteria). The safety analysis population included all patients in the modified intention-to-treat usual care group and those who took at least one dose of randomised medication in the allopurinol group. This study is registered with the EU Clinical Trials Register, EudraCT 2013-003559-39, and ISRCTN, ISRCTN32017426. FINDINGS: Between Feb 7, 2014, and Oct 2, 2017, 5937 participants were enrolled and then randomly assigned to receive allopurinol or usual care. After exclusion of 216 patients after randomisation, 5721 participants (mean age 72·0 years [SD 6·8], 4321 [75·5%] males, and 5676 [99·2%] white) were included in the modified intention-to-treat population, with 2853 in the allopurinol group and 2868 in the usual care group. Mean follow-up time in the study was 4·8 years (1·5). There was no evidence of a difference between the randomised treatment groups in the rates of the primary endpoint. 314 (11·0%) participants in the allopurinol group (2·47 events per 100 patient-years) and 325 (11·3%) in the usual care group (2·37 events per 100 patient-years) had a primary endpoint (hazard ratio [HR] 1·04 [95% CI 0·89–1·21], p=0·65). 288 (10·1%) participants in the allopurinol group and 303 (10·6%) participants in the usual care group died from any cause (HR 1·02 [95% CI 0·87–1·20], p=0·77). INTERPRETATION: In this large, randomised clinical trial in patients aged 60 years or older with ischaemic heart disease but no history of gout, there was no difference in the primary outcome of non-fatal myocardial infarction, non-fatal stroke, or cardiovascular death between participants randomised to allopurinol therapy and those randomised to usual care. FUNDING: UK National Institute for Health and Care Research
    corecore