3 research outputs found

    Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)

    Get PDF
    One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size

    Benchmark of nanoparticle tracking analysis on measuring nanoparticle sizing and concentration

    No full text
    One of the greatest challenges in the manufacturing and development of nanotechnologies is the requirement for robust, reliable, and accurate characterization data. Presented here are the results of an interlaboratory comparison (ILC) brought about through multiple rounds of engagement with NanoSight Malvern and ten pan-European research facilities. Following refinement of the nanoparticle tracking analysis (NTA) technique, the size and concentration characterization of nanoparticles in liquid suspension was proven to be robust and reproducible for multiple sample types in monomodal, binary, or multimodal mixtures. The limits of measurement were shown to exceed the 30–600 nm range (with all system models), with percentage coefficients of variation (% CV) being calculated as sub 5% for monodisperse samples. Particle size distributions were also improved through the incorporation of the finite track length adjustment (FTLA) algorithm, which most noticeably acts to improve the resolution of multimodal sample mixtures. The addition of a software correction to account for variations between instruments also dramatically increased the accuracy and reproducibility of concentration measurements. When combined, the advances brought about during the interlaboratory comparisons allow for the simultaneous determination of accurate and precise nanoparticle sizing and concentration data in one measurement
    corecore