24 research outputs found

    Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yellow fever virus, a member of the genus <it>Flavivirus</it>, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP). This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor.</p> <p>Results</p> <p>YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus.</p> <p>Conclusion</p> <p>This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow <it>in vivo </it>studies on flavivirus cell and tissue tropism as well as cellular processes related to flavivirus infection.</p

    Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue virus pathogenesis is not yet fully understood and the identification of patients at high risk for developing severe disease forms is still a great challenge in dengue patient care. During the present study, we evaluated prospectively the potential of cytokines present in plasma from patients with dengue in stratifying disease severity.</p> <p>Methods</p> <p>Seventeen-cytokine multiplex fluorescent microbead immunoassay was used for the simultaneous detection in 59 dengue patients. GLM models using bimodal or Gaussian family were determined in order to associate cytokines with clinical manifestations and laboratory diagnosis.</p> <p>Results</p> <p>IL-1β, IFN-γ, IL-4, IL-6, IL-13, IL-7 and GM-CSF were significantly increased in patients with severe clinical manifestations (severe dengue) when compared to mild disease forms (mild dengue). In contrast, increased MIP-1β levels were observed in patients with mild dengue. MIP-1β was also associated with CD56+NK cell circulating rates. IL-1β, IL-8, TNF-α and MCP-1 were associated with marked thrombocytopenia. Increased MCP-1 and GM-CSF levels correlated with hypotension. Moreover, MIP-1β and IFN-γ were independently associated with both dengue severity and disease outcome.</p> <p>Conclusion</p> <p>Our data demonstrated that the use of a multiple cytokine assay platform was suitable for identifying distinct cytokine profiles associated with the dengue clinical manifestations and severity. MIP-β is indicated for the first time as a good prognostic marker in contrast to IFN-γ that was associated with disease severity.</p

    Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection

    Get PDF
    ABSTRACT: Mononuclear phagocytes are considered to be main targets for Dengue Virus (DENV) replication. These cells are activated after infection, producing proinflammatory mediators, including tumour-necrosis factor-α, which has also been detected in vivo. Nitric oxide (NO), usually produced by activated mononuclear phagocytes, has antimicrobial and antiviral activities. METHODS: The expression of DENV antigens and inducible nitric oxide synthase (iNOS) in human blood isolated monocytes were analysed by flow cytometry using cells either from patients with acute Dengue Fever or after DENV-1 in vitro infection. DENV-1 susceptibility to iNOS inhibition and NO production was investigated using N(G)-methyl L-Arginine (N(G)MLA) as an iNOS inhibitor, which was added to DENV-1 infected human monocytes, and sodium nitroprussiate (SNP), a NO donor, added to infected C6/36 mosquito cell clone. Viral antigens after treatments were detected by flow cytometry analysis. RESULTS: INOS expression in activated monocytes was observed in 10 out of 21 patients with Dengue Fever and was absent in cells from ten healthy individuals. DENV antigens detected in 25 out of 35 patients, were observed early during in vitro infection (3 days), significantly diminished with time, indicating that virus replicated, however monocytes controlled the infection. On the other hand, the iNOS expression was detected at increasing frequency in in vitro infected monocytes from three to six days, exhibiting an inverse relationship to DENV antigen expression. We demonstrated that the detection of the DENV-1 antigen was enhanced during monocyte treatment with N(G)MLA. In the mosquito cell line C6/36, virus detection was significantly reduced in the presence of SNP, when compared to that of untreated cells. CONCLUSION: This study is the first to reveal the activation of DENV infected monocytes based on induction of iNOS both in vivo and in vitro, as well as the susceptibility of DENV-1 to a NO production

    Dengue-2 and yellow fever 17DD viruses infect human dendritic cells, resulting in an induction of activation markers, cytokines and chemokines and secretion of different TNF-α and IFN-α profiles

    Full text link
    Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome

    Analysis of tumor necrosis factor-a serum level in Brazilian patients with dengue-2

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2019-10-01T10:58:14Z No. of bitstreams: 1 ElisabethLampe_PedroBorges_etal_IOC_1995.pdf: 93256 bytes, checksum: 1574bca5bec5d4f1f28ec73055271671 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-10-01T11:06:57Z (GMT) No. of bitstreams: 1 ElisabethLampe_PedroBorges_etal_IOC_1995.pdf: 93256 bytes, checksum: 1574bca5bec5d4f1f28ec73055271671 (MD5)Made available in DSpace on 2019-10-01T11:06:57Z (GMT). No. of bitstreams: 1 ElisabethLampe_PedroBorges_etal_IOC_1995.pdf: 93256 bytes, checksum: 1574bca5bec5d4f1f28ec73055271671 (MD5) Previous issue date: 1995Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Virologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Virologia. Rio de Janeiro, RJ, Brasil

    Dengue-2 infection and the induction of apoptosis in human primary monocytes

    No full text
    Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells

    Dengue-2 infection and the induction of apoptosis in human primary monocytes

    No full text
    Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-&#945; and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells
    corecore