1,215 research outputs found
Conduction States with Vanishing Dimerization in Pt Nanowires on Ge(001) Observed with Scanning Tunneling Microscopy
The low-energy electronic properties of one-dimensional nanowires formed by
Pt atoms on Ge(001) are studied with scanning tunneling microscopy down to the
millivolt-regime. The chain structure exhibits various dimerized elements at
high tunneling bias, indicative of a substrate bonding origin rather than a
charge density wave. Unexpectedly, this dimerization becomes vanishingly small
when imaging energy windows close to the Fermi level with adequately low
tunneling currents. Evenly spaced nanowire atoms emerge which are found to
represent conduction states. Implications for the metallicity of the chains are
discussed.Comment: 4 pages, 4 figure
Proof-Pattern Recognition and Lemma Discovery in ACL2
We present a novel technique for combining statistical machine learning for
proof-pattern recognition with symbolic methods for lemma discovery. The
resulting tool, ACL2(ml), gathers proof statistics and uses statistical
pattern-recognition to pre-processes data from libraries, and then suggests
auxiliary lemmas in new proofs by analogy with already seen examples. This
paper presents the implementation of ACL2(ml) alongside theoretical
descriptions of the proof-pattern recognition and lemma discovery methods
involved in it
Hipster: Integrating Theory Exploration in a Proof Assistant
This paper describes Hipster, a system integrating theory exploration with
the proof assistant Isabelle/HOL. Theory exploration is a technique for
automatically discovering new interesting lemmas in a given theory development.
Hipster can be used in two main modes. The first is exploratory mode, used for
automatically generating basic lemmas about a given set of datatypes and
functions in a new theory development. The second is proof mode, used in a
particular proof attempt, trying to discover the missing lemmas which would
allow the current goal to be proved. Hipster's proof mode complements and
boosts existing proof automation techniques that rely on automatically
selecting existing lemmas, by inventing new lemmas that need induction to be
proved. We show example uses of both modes
Effects of demographic stochasticity on biological community assembly on evolutionary time scales
We study the effects of demographic stochasticity on the long-term dynamics
of biological coevolution models of community assembly. The noise is induced in
order to check the validity of deterministic population dynamics. While
mutualistic communities show little dependence on the stochastic population
fluctuations, predator-prey models show strong dependence on the stochasticity,
indicating the relevance of the finiteness of the populations. For a
predator-prey model, the noise causes drastic decreases in diversity and total
population size. The communities that emerge under influence of the noise
consist of species strongly coupled with each other and have stronger linear
stability around the fixed-point populations than the corresponding noiseless
model. The dynamics on evolutionary time scales for the predator-prey model are
also altered by the noise. Approximate fluctuations are observed with
noise, while fluctuations are found for the model without demographic
noise
Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency
The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%)
alloy, in view of applications in optoelectronics, is determined for the first
time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from
crystalline GaN, in particular in the conduction band, are dramatic. Employing
the orbital character and elemental specificity of the SXE/SXA spectroscopies,
we identify a charge transfer from the N atoms at the valence band maximum,
reducing the overlap with the wavefunction in conduction band minimum, as the
main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a
k-conserving process of resonant inelastic x-ray scattering involving the L1
derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres
Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy
The optical properties of magnetite at room temperature were studied by
infrared reflectivity measurements as a function of pressure up to 8 GPa. The
optical conductivity spectrum consists of a Drude term, two sharp phonon modes,
a far-infrared band at around 600 cm, and a pronounced mid-infrared
absorption band. With increasing pressure both absorption bands shift to lower
frequencies and the phonon modes harden in a linear fashion. Based on the shape
of the MIR band, the temperature dependence of the dc transport data, and the
occurrence of the far-infrared band in the optical conductivity spectrum the
polaronic coupling strength in magnetite at room temperature should be
classified as intermediate. For the lower-energy phonon mode an abrupt increase
of the linear pressure coefficient occurs at around 6 GPa, which could be
attributed to minor alterations of the charge distribution among the different
Fe sites.Comment: 7 pages, 7 figure
High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition
We have studied the electronic structure and charge ordering (Verwey)
transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the
enhanced probing depth and the use of different surface preparations we are
able to distinguish surface and volume effects in the spectra. The pseudogap
behavior of the intrinsic spectra and its temperature dependence give evidence
for the existence of strongly bound small polarons consistent with both dc and
optical conductivity. Together with other recent structural and theoretical
results our findings support a picture in which the Verwey transition contains
elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb
interaction
- …
