6 research outputs found

    Impacts of Invasive Riparian Knotweek On Litter Decomposition, Aquatic Fungi, and Macroinvertebrates

    No full text
    Bohemian knotweed (Polygonum × bohemicum), the hybrid between Japanese and giant knotweed, is the most common invasive knotweed species in western North America and the most difficult to control. Invasive knotweed congeners spread aggressively along streams and establish dense monotypic stands, reducing riparian plant species diversity. Allochthonous organic matter inputs from riparian plants are an important source of energy and nutrients for organisms in small streams. However, little information exists concerning the influence of knotweed on stream processes. This study examines the quality of Bohemian knotweed leaves compared to native red alder and black cottonwood leaves, along with leaf-associated fungal biomass accumulation, macroinvertebrate communities, and decay rates from three forested streams in western Washington State. Senesced knotweed leaves were lower in nitrogen and phosphorus, and higher in cellulose, fiber, and lignin content than alder leaves, but were more similar to cottonwood leaves. Fungal biomass differed among species and changed over time. Macroinvertebrate shredders collected from leaf packs after 31 days were proportionately more abundant on alder leaves than knotweed and cottonwood. Decay rates were not significantly different among leaf species, but during the first 31 days alder broke down faster than knotweed. After 56 days, all of the leaf packs were mostly decomposed. Overall, these findings do not show major discrepancies between leaf species except those related to initial litter structural and chemical quality. However, changes in the timing and quantity of litter inputs are also important factors to be considered in understanding the impact of invasive knotweed on stream ecosystem processes

    Spatial Habitat Structure Assembles Willow-Dependent Communities across the Primary Successional Watersheds of Mount St. Helens, USA

    No full text
    The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka willow (Salix sitchensis) and their dependent communities have been established along newly-formed streams. Thus, the study of these dependent communities provides a unique and rare opportunity to investigate factors influencing metacommunity assembly during true primary succession. We analyzed the influence of landscape connectivity on metacommunity assembly through a novel application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf chemistry, and leaf area. We found that landscape connectivity structures community composition on willows across the Pumice Plain, where the least connected willows favored active flyers such as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of invasive species
    corecore