3 research outputs found

    Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

    Get PDF
    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 mu m(3), i.e. no more than 6 x 10(5) unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 x 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures

    A molecular level approach to elucidate the supramolecular packing of light-harvesting antenna systems

    No full text
    The molecular geometry and supramolecular packing of two bichromophoric prototypic light harvesting compounds D1A2 and D2A2, consisting of two naphthylimide energy donors that were attached to the 1,7 bay positions of a perylene monoimide diester energy acceptor, have been determined by a hybrid approach using magic angle spinning NMR and electron nano crystallography (ENC), followed by modelling. NMR shift constraints, combined with the P-1 space group obtained from ENC, were used to generate a centrosymmetric dimer of truncated perylene fragments. This racemic packing motif is used in a biased molecular replacement approach to generate a partial 3D electrostatic scattering potential map. Resolving the structure of the bay substituents is guided by the inversion symmetry and the distance constraints obtained from heteronuclear correlation spectra. The antenna molecules form a pseudocrystalline lattice of antiparallel centrosymmetric dimers with pockets of partially disordered bay substituents. The two molecules in a unit cell form a butterfly-type arrangement. The hybrid methodology that we have developed is robust and widely applicable for critical structural underpinning of self-assembling structures of large organic molecules.Solid state NMR/Biophysical Organic Chemistr
    corecore