2 research outputs found

    Impact of D<sub>2</sub>O/H<sub>2</sub>O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects

    No full text
    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H<sub>2</sub>O. When the solvent is replaced by D<sub>2</sub>O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination <i>via</i> (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H<sub>2</sub>O to D<sub>2</sub>O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H<sub>2</sub>O to D<sub>2</sub>O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors

    Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons

    No full text
    Carbon dots (CDs) have attracted rapidly growing interest in recent years due to their unique and tunable optical properties, the low cost of fabrication, and their widespread uses. However, due to the complex structure of CDs, both the molecular ingredients and the intrinsic mechanisms governing photoluminescence of CDs are poorly understood. Among other features, a large Stokes shift of over 100 nm and a photoluminescence spectrally dependent on the excitation wavelength have so far not been adequately explained. In this Letter we investigate CDs and develop a model system to mimic their optical properties. This system comprised three types of polycyclic aromatic hydrocarbon (PAH) molecules with fine-tuned concentrations embedded in a polymer matrix. The model suggests that the Stokes shift in CDs is due to the self-trapping of an exciton in the PAH network. The width and the excitation dependence of the emission comes from a selective excitation of PAHs with slightly different energy gaps and from energy transfer between them. These insights will help to tailor the optical properties of CDs and help their implementation into applications, e.g., light-emitting devices and biomarkers. This could also lead to “artificial” tunable carbon dots by locally modifying the composition and consequently the optical properties of composite PAH films
    corecore