13 research outputs found
Age, anti-müllerian hormone, antral follicles count to predict amenorrhea or oligomenorrhea after chemotherapy with cyclophosphamide
BACKGROUND: A cohort study was performed to identify ovarian reserve markers (ORM) that predicts amenorrhea or oligomenorrhea 6 months after cyclophosphamide CTX in women with breast cancer. METHODS: 52 eumenorrheic patients with breast cancer were enrolled. FSH, anti-Müllerian hormone (AMH), antral follicles count (AFC) were measured before and 6 months after CTX. A logistic regression for independent samples and determination of the ROC curve were performed. RESULTS: The age of 32 years presented 96 % of sensitivity and 39 % of specificity to predict amenorrhea or oligomenorrhea with ROC area under the curve (AUC) of 0.77. ovarian reserve marker (ORM) with power to predict amenorrhea or oligomenorrhea in women after CTX were AMH <3.32 ng/mL (sensitivity of 85 %, specificity of 75 % and AUC 0.87), AFC <13 follicles (sensitivity 81 %, specificity 62 %, AUC 0.81). AMH cutoff to predict amenorrhea was 1.87 ng/mL (sensitivity 82 %, specificity 83 %, AUC 0.84) and AFC cutoff was 9 follicles (sensitivity 71 %, specificity 78 %, AUC 0.73). CONCLUSIONS: ≥32-years-old women, AMH <3.32 ng/mL and AFC <13 follicles determined significantly higher risk of amenorrhea or oligomenorrhea after CTX with cyclophosphamide. The ORM age (≥32 years) analyzed together with AMH or AFC increases sensitivity and specificity in predicting amenorrhea or oligomenorrhea
Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error
Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers