53 research outputs found

    Exploiting multimode waveguides for pure fibre-based imaging

    Get PDF
    We acknowledge support from the UK Engineering and Physical Science Research CouncilThere has been an immense drive in modern microscopy towards miniaturisation and fibre based technology. This has been necessitated by the need to access hostile or diffcult environments in-situ and in-vivo. Strategies to date have included the use of specialist fibres and miniaturised scanning systems accompanied by ingenious microfabricated lenses. We present a novel approach for this field by utilising disordered light within a standard multimode optical fibre for lensless microscopy and optical mode conversion. We demonstrate the modalities of bright-field and dark-field imaging and scanning fluorescence microscopy at acquisition rates allowing observation of dynamic processes such as Brownian motion of mesoscopic particles. Furthermore, we show how such control can realise a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices. These may be useful for future fibre based implementations of super-resolution or light sheet microscopy.Publisher PDFPeer reviewe

    Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles

    Get PDF
    We demonstrate laser-induced breakdown of an optically trapped nanoparticle with a nanosecond laser pulse. Controllable cavitation within a microscope sample was achieved, generating shear stress to monolayers of live cells. This efficiently permeabilize their plasma membranes. We show that this technique is an excellent tool for plasmid-DNA transfection of cells with both reduced energy requirements and reduced cell lysis compared to previously reported approaches. Simultaneous multisite targeted nanosurgery of cells is also demonstrated using a spatial light modulator for parallelizing the technique.Publisher PDFPeer reviewe

    Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects

    Get PDF
    Background and aim: To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Methods: Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Results: Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Conclusions: Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation

    Shaping the light transmission through a multimode optical fibre : complex transformation analysis and applications in biophotonics

    Get PDF
    Funding: UK Engineering and Physical Sciences Research Council and the University of St Andrews for funding.We present a powerful approach towards full understanding of laser light propagation through multimode optical fibres and control of the light at the fibre output. Transmission of light within a multimode fibre introduces randomization of laser beam amplitude, phase and polarization. We discuss the importance of each of these factors and introduce an experimental geometry allowing full analysis of the light transmission through the multimode fibre and subsequent beam-shaping using a single spatial light modulator. We show that using this approach one can generate an arbitrary output optical field within the accessible field of view and range of spatial frequencies given by fibre core diameter and numerical aperture, respectively, that contains over 80% of the total available power. We also show that this technology has applications in biophotonics. As an example, we demonstrate the manipulation of colloidal microparticles.Publisher PDFPeer reviewe

    Shaping the light transmission through a multimode optical fibre:complex transformation analysis and applications in biophotonics

    No full text
    We present a powerful approach towards full understanding of laser light propagation through multimode optical fibres and control of the light at the fibre output. Transmission of light within a multimode fibre introduces randomization of laser beam amplitude, phase and polarization. We discuss the importance of each of these factors and introduce an experimental geometry allowing full analysis of the light transmission through the multimode fibre and subsequent beam-shaping using a single spatial light modulator. We show that using this approach one can generate an arbitrary output optical field within the accessible field of view and range of spatial frequencies given by fibre core diameter and numerical aperture, respectively, that contains over 80% of the total available power. We also show that this technology has applications in biophotonics. As an example, we demonstrate the manipulation of colloidal microparticles

    Shaping the future of manipulation

    No full text
    Optical forces can be used to manipulate biological and colloidal material in a non-contact manner. This forms the foundation of a wealth of exciting science, particularly in the fields of physics, biology and soft condensed matter. Although the standard Gaussian single-beam trap remains a very powerful tool, shaping the phase and amplitude of a light field provides unusual light patterns that add a major new dimension to research into particle manipulation. This Review summarizes the impact and emerging applications of shaped light in the field of optical manipulation
    corecore