465 research outputs found

    Centroids of Gamow-Teller transitions at finite temperature in fp-shell neutron-rich nuclei

    Get PDF
    The temperature dependence of the energy centroids and strength distributions for Gamow-Teller (GT) 1+1^+ excitations in several fp-shell nuclei is studied. The quasiparticle random phase approximations (QRPA) is extended to describe GT states at finite temperature. A shift to lower energies of the GT+^+ strength is found, as compared to values obtained at zero temperature.Comment: 12 pages, contains 3 tables. E-mail: [email protected], [email protected]

    The Friedrichs-Model with fermion-boson couplings II

    Get PDF
    In this work we present a formal solution of the extended version of the Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic states, which are coupled to fermions. The simultaneous treatment of the couplings of the fermions with the discrete and continuous sectors of the bosonic degrees of freedom leads to a system of coupled equations, whose solutions are found by applying standard methods of representation of bound and resonant states.Comment: 13 page

    Single- and double-beta decay Fermi-transitions in an exactly solvable model

    Full text link
    An exactly solvable model suitable for the description of single and double-beta decay processes of the Fermi-type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons in a single j-shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the hamiltonian in the quasiparticle basis (qp) and with the results of both the standard quasiparticle random phase approximation (QRPA) and the renormalized one (RQRPA). The role of the scattering term of the quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to Physcal Review

    Double beta decay to the excited states: experimental review

    Full text link
    A brief review on double beta decay to excited states of daughter nuclei is given. The ECEC(ov) transision to the excited states are discussed in association with a possible enhancement of the decay rate by several orders of magnitude.Comment: 5 pages; talk at MEDEX'07 ("Matrix Elements for the Double-beta-decay Experiments"; Prague, June 11-14, 2007

    Giant dipole resonance with exact treatment of thermal fluctuations

    Full text link
    The shape fluctuations due to thermal effects in the giant dipole resonance (GDR) observables are calculated using the exact free energies evaluated at fixed spin and temperature. The results obtained are compared with Landau theory calculations done by parameterizing the free energy. The Landau theory is found to be insufficient when the shell effects are dominating.Comment: 5 pages, 2 figure

    A schematic model for QCD at finite temperature

    Get PDF
    The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons. The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum is discussed. We show that ground state correlations are essential to describe physical properties of the spectrum at low energies. Phase transitions are described in an effective manner, by using coherent states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related to a collective state. The formalism is extended to consider finite temperatures. The partition function is calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density, heat capacity and transitions from the hadronic phase to the quark-gluon plasma are calculated.Comment: 33 pages, 11 figure

    Generalized rotational hamiltonians from nonlinear angular momentum algebras

    Full text link
    Higgs algebras are used to construct rotational Hamiltonians. The correspondence between the spectrum of a triaxial rotor and the spectrum of a cubic Higgs algebra is demonstrated. It is shown that a suitable choice of the parameters of the polynomial algebra allows for a precise identification of rotational properties. The harmonic limit is obtained by a contraction of the algebra, leading to a linear symmetry.Comment: 3 figures, 6 pages, 15 references. Phys. Rev. C (in press, ms CZ10038

    Competition between standard and exotic double beta decays

    Get PDF
    We discuss the contributions of higher order terms in weak Hamiltonian to the standard two-neutrino double beta decay. The formalism for the unique first forbidden transitions has been developed, and it is shown that they can alter the two-electron energy spectrum. Yet, their effect is too small to screen the detection of exotic neutrinoless double beta decays, which are candidates for testing the physics beyond the standard model.Comment: 9 pages, latex, 1ps figures, minor changes, to appear in Phys. Lett.
    corecore