14 research outputs found

    Fully Explorable Horned Particles Hiding Charge

    Full text link
    The charge-hiding effect by a horned particle, which was studied for the case where gravity/gauge-field system is self-consistently interacting with a charged lightlike brane (LLB) as a matter source, is now studied for the case of a time like brane. From the demand that no surfaces of infinite coordinate time redshift (horizons) appear in the problem we are lead now to a completly explorable horned particle space for traveller that goes through the horned particle (as was the case for the LLB) but now also in addition to this, the horned region is fully visible to a static external observer. This requires negative surface energy density for the shell sitting at the throat. We study a gauge field subsystem which is of a special non-linear form containing a square-root of the Maxwell term and which previously has been shown to produce a QCD-like confining gauge field dynamics in flat space-time. The condition of finite energy of the system or asymptotic flatness on one side of the horned particle implies that the charged object sitting at the throat expels all the flux it produces into the other side of the horned particle, which turns out to be of a "tube-like" nature. An outside observer in the asymptotically flat universe detects, therefore, apparently neutral object. The hiding of the electric flux behind the tube-like region of a horned particle is the only possible way that a truly charged particle can still be of finite energy, in a theory that in flat space describes confinement. This points to the physical relevance of such solutions, even though there is the need of negative energy density at the throat of the horned particle, which can be of quantum mechanical origin.Comment: The new version has been accepted for publication in Classical and Quantum Gravity. Title changed to "Fully Explorable Horned Particles Hiding Charge". Horned Particles terminology is used now instead of "wormholes" to dscribe the solutions here. arXiv admin note: text overlap with arXiv:1108.373

    Inflation and Nonsingular Spacetimes of Cosmic Strings

    Get PDF
    Inflation of cosmic gauge and global strings is investigated by numerically solving the combined Einstein and field equations. Above some critical symmetry-breaking scales, the strings undergo inflation along the radial direction as well as the axial direction at the core. The nonsingular nature of the spacetimes around supercritical gauge and global strings is discussed and contrasted to the singular static solutions that have been discussed in the literature.Comment: 22 pages, REVTeX, 7 PostScript figure

    Second Hopf map and Yang-Coulomb system on 5d (pseudo)sphere

    Full text link
    Using the second Hopf map, we perform the reduction of the eight-dimensional (pseudo)spherical (Higgs)oscillator to a five-dimensional system interacting with a Yang monopole. Then, using a standard trick, we obtain, from the latter system, the pseudospherical and spherical generalizations of the Yang-Coulomb system (the five dimensional analog of MICZ-Kepler system). We present the whole set of its constants of motions, including the hidden symmetry generators given by the analog of Runge-Lenz vector. In the same way, starting from the eight-dimensional anisotropic inharmonic Higgs oscillator, we construct the integrable (pseudo)spherical generalization of the Yang-Coulomb system with the Stark term.Comment: 10 pages, PACS: 03.65.-w, 02.30.Ik, 14.80.H

    Non stationary Einstein-Maxwell fields interacting with a superconducting cosmic string

    Full text link
    Non stationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as single soliton perturbations of a Levi-Civita metric, by an application of Alekseev inverse scattering method. We show that the metric derived by L. Witten, interpreted as describing the electrogravitational field of a straight, stationary, conducting wire may be recovered in the limit of a `wide' soliton. This leads to the possibility of interpreting the solitonic solutions as representing a non stationary electrogravitational field exterior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of the restrictions that arise when appropiate energy and regularity conditions are imposed on the matter and fields comprising the string, considered as `source', the most important being that this `source' must necessarily have a non- vanishing minimum radius. We show that as a consequence, it is not possible, except in the stationary case, to assign uniquely a current to the source from a knowledge of the electrogravitational fields outside the source. A discussion of the asymptotic properties of the metrics, the physical meaning of their curvature singularities, as well as that of some of the metric parameters, is also included.Comment: 14 pages, no figures (RevTex

    Static solutions of Einstein's equations with cylindrical symmetry

    Get PDF
    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the space-time is curved. These solutions appear in the literature, but in different forms, corresponding to different definitions of the radial coordinate. Because all the vacuum solutions are singular on the axis, we attempt to match them to "interior" solutions with nonvanishing energy density and pressure. In addition to the well known "cosmic string" solution joining on to the cone, we find some numerical solutions that join on to the other exterior solutions.Comment: 16 pages, 5 figures, 3 tables; many literature citations removed from main body; added historical section to put project into context and include additional reference

    Gravitational waves, black holes and cosmic strings in cylindrical symmetry

    Get PDF
    Gravitational waves in cylindrically symmetric Einstein gravity are described by an effective energy tensor with the same form as that of a massless Klein- Gordon field, in terms of a gravitational potential generalizing the Newtonian potential. Energy-momentum vectors for the gravitational waves and matter are defined with respect to a canonical flow of time. The combined energy-momentum is covariantly conserved, the corresponding charge being the modified Thorne energy. Energy conservation is formulated as the first law expressing the gradient of the energy as work and energy-supply terms, including the energy flux of the gravitational waves. Projecting this equation along a trapping horizon yields a first law of black-hole dynamics containing the expected term involving area and surface gravity, where the dynamic surface gravity is defined with respect to the canonical flow of time. A first law for dynamic cosmic strings also follows. The Einstein equation is written as three wave equations plus the first law, each with sources determined by the combined energy tensor of the matter and gravitational waves.Comment: 10 pages, revtex. Published version with further detail

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Horizonless Rotating Solutions in (n+1)(n+1)-dimensional Einstein-Maxwell Gravity

    Full text link
    We introduce two classes of rotating solutions of Einstein-Maxwell gravity in n+1n+1 dimensions which are asymptotically anti-de Sitter type. They have no curvature singularity and no horizons. The first class of solutions, which has a conic singularity yields a spacetime with a longitudinal magnetic field and kk rotation parameters. We show that when one or more of the rotation parameters are non zero, the spinning brane has a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a spacetime with an angular magnetic field and % \kappa boost parameters. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS/CFT correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic divergencies associated to the Weyl anomalies and matter field are zero, and the rr divergence of the action can be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The version to appear in Phys. Rev.

    Cosmic strings in dilaton gravity

    Get PDF
    We examine the metric of an isolated self-gravitating abelian-Higgs vortex in dilatonic gravity for arbitrary coupling of the vortex fields to the dilaton. We look for solutions in both massless and massive dilaton gravity. We compare our results to existing metrics for strings in Einstein and Jordan-Brans-Dicke theory. We explore the generalization of Bogomolnyi arguments for our vortices and comment on the effects on test particles.Comment: 24 pages plain TEX, 4 figures -- references amended, some additional comments added, version to appear in journa

    Post-Newtonian Gravitational Radiation and Equations of Motion via Direct Integration of the Relaxed Einstein Equations. I. Foundations

    Get PDF
    We present a self-contained framework called Direct Integration of the Relaxed Einstein Equations (DIRE) for calculating equations of motion and gravitational radiation emission for isolated gravitating systems based on the post-Newtonian approximation. We cast the Einstein equations into their ``relaxed'' form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve the equations formally as a retarded integral over the past null cone of the field point (chosen to be within the near zone when calculating equations of motion, and in the far zone when calculating gravitational radiation). The ``inner'' part of this integral(within a sphere of radius R∌\cal R \sim one gravitational wavelength) is approximated in a slow-motion expansion using standard techniques; the ``outer'' part, extending over the radiation zone, is evaluated using a null integration variable. We show generally and explicitly that all contributions to the inner integrals that depend on R\cal R cancel corresponding terms from the outer integrals, and that the outer integrals converge at infinity, subject only to reasonable assumptions about the past behavior of the source. The method cures defects that plagued previous ``brute-force'' slow-motion approaches to motion and gravitational radiation for isolated systems. We detail the procedure for iterating the solutions in a weak-field, slow-motion approximation, and derive expressions for the near-zone field through 3.5 post-Newtonian order in terms of Poisson-like potentials.Comment: 43 pages, RevTeX, 3 figures, submitted to Physical Review
    corecore