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Abstract. In analogy with the standard derivation of the Schwarzschild solution,

we find all static, cylindrically symmetric solutions of the Einstein field equations for

vacuum. These include not only the well known cone solution, which is locally flat,

but others in which the metric coefficients are powers of the radial coordinate and the

space-time is curved. These solutions appear in the literature, but in different forms,

corresponding to different definitions of the radial coordinate. Because all the vacuum

solutions are singular on the axis, we attempt to match them to “interior” solutions

with nonvanishing energy density and pressure. In addition to the well known “cosmic

string” solution joining on to the cone, we find some numerical solutions that join on

to the other exterior solutions.

PACS numbers: 04.20.-q

1. Introduction

Static solutions of Einstein’s equations with spherical symmetry (the exterior and

interior Schwarzschild solutions) are staples of courses in general relativity. Solutions

with cylindrical symmetry (combining translation along and rotation around an axis)

are much less familiar. In this paper we construct and study all the vacuum solutions

of this sort, and we set up the differential equations for nonvacuum solutions and

find some solutions numerically. The article is intended for students at the advanced

undergraduate or beginning graduate level; instructors of introductory general relativity

courses may also wish to use portions of it as a basis for exercises appropriate for

their classes. The paper is based on the undergraduate research thesis of Cynthia

Trendafilova [1].

In Section 2 we write the most general expression for a space-time metric with

static and cylindrical symmetry and solve the Einstein vacuum field equations for the

components of the metric tensor. Equivalent solutions may look different because

of different definitions of the radial coordinate in a cylindrical system. At least

three different conventions (“radial gauges”) have been frequently used in the previous

literature (see Section 6), none of which is the one that seemed most natural to us.
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Namely, we adopt the convention that the angular term in the metric is r2 dφ2. Then

we carefully remove all redundant solutions corresponding to the freedom to rescale the

coordinates. The principal result is the general solution (18), in which all the metric

components are powers of r with exponents related by the constraint (16).

In Sections 3 and 4 we explore the geometrical natures of the various solutions

obtained. They fall into two classes, the more plausible of which shows the circumference

2πr increasing with radial arc length (another natural radial coordinate). Also, the

transformations into the other radial gauges are worked out; in all cases, the metric

functions are powers of whatever radial coordinate is adopted. Our investigation of

the relations among these various coordinate conventions is more systematic than any

previous one known to us.

The space-times (18), which are curved in general, form a two-parameter family; it

includes a one-parameter subfamily of spaces that are locally flat. When maximally

continued down to a central singularity, such a space-time is a cone formed from

Minkowski space by removing a wedge, characterized by a deficit angle. Although the

other solutions were discovered in the early days of general relativity [2, 3], they are

much less well known than the cones.

Like the exterior Schwarzschild solution (when it is not treated as a black hole), one

expects vacuum cylindrical solutions to be physically relevant only over some subinterval

of the r axis. In Section 5 we search for nonsingular “interior” solutions, with nonvacuum

sources, that can be joined on to the vacuum solutions at some radius. The easiest to

find have a locally flat cone solution on the outside and a constant energy density ρ

inside, with pressure pz = −ρ along the axis and vanishing pressures pr = pφ = 0 in the

perpendicular plane; these are the well known “cosmic string” solutions [4,5]. Although

natural from the point of view of gauge theory (see, e.g., [6]), such an equation of

state would be surprising for normal matter. We write down the generic Einstein and

conservation equations, isolate the independent dynamical variables and constraint, and

construct some numerical solutions with isotropic pressures. These solutions match onto

the exterior nonflat vacuum solutions. The results are examples of space-times that

also deserve to be called “cosmic strings” but have a more general equation of state

for the matter inside the string. We do not claim that these solutions necessarily are

astrophysically plausible. In particular, we have not investigated their stability under

perturbations that violate the assumed symmetries.

In Section 6 we present some historical background on the solutions and gauge

choices presented in this paper, while Section 7 offers some concluding remarks.

2. Vacuum solution of Einstein equations

In order to solve the Einstein equations for a cylindrically symmetric spacetime, we must

first determine the line element with which we would like to work. Let t denote a time

coordinate. For a fixed time t, a cylindrically symmetric spacetime can be described as

follows. There is a central axis of symmetry, with z denoting the coordinate along this
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axis. Then φ denotes the coordinate which measures an angle around this axis, and r is

the radial coordinate which increases as one moves away from the axis. The line element

ds2 is then given by ds2 = gαβdx
αdxβ , where gαβ is the metric tensor describing the

spacetime. Since we want static, cylindrical symmetry, we require that
√
−ds2, the clock

time measured by a test particle in moving from (t, r, φ, z) to (t, r, φ, z)+(dt, dr, dφ, dz),

is independent of t, φ, and z. It must also be invariant under reversals in the directions

or signs of dt, dφ, and dz. Hence the general static, cylindrically symmetric metric is of

the form

ds2 = −e2Φdt2 + e2Λdr2 + e2Ωdφ2 + e2Ψdz2, (1)

where Φ, Λ, Ω, and Ψ are functions of r only. By writing our unknown functions in

the form of exponentials, we guarantee that our coefficients will be positive as we would

like them to be, and also mirror the standard textbook treatment of the spherically

symmetric metric.

In analogy to the standard treatment of spherical symmetry [7, p 256], we define

r so that the coefficient of dφ2 is equal to r2. We shall call this convention “tangential

gauge.” In Sections 3 and 4 we discuss three alternative conventions (out of infinitely

many possible), and also the question of whether any generality is lost by this convention.

Thus by setting e2Ω = r2 the metric can be written

ds2 = −e2Φdt2 + e2Λdr2 + r2dφ2 + e2Ψdz2, (2)

where Φ, Λ, and Ψ are the unknown functions of r for which we would like to solve.

The form in which we have written the metric does not restrict the range of φ to be

from 0 to 2π; instead it runs from 0 to some angle φ∗. As we shall show later, φ can

be forced to fill an angle of 2π by rescaling φ and bringing in an additional numerical

factor multiplying the angular term, or by also rescaling r and bringing in a numerical

factor multiplying the dr2 term.

Using the standard known expressions for the Christoffel symbols, Riemann

curvature tensor, and Ricci tensor associated with a given metric [7, p 134, 159, 164],

all of the components of these objects can be calculated for this static, cylindrically

symmetric metric. The results for this are presented below.

Nonzero Christoffel Symbols:

Γt
tr = Γt

rt = Φ′

Γr
tt = Φ′e2(Φ−Λ)

Γr
rr = Λ′

Γr
φφ = −re−2Λ (3)

Γr
zz = −Ψ′e2(Ψ−Λ)

Γφ
rφ = Γφ

φr =
1

r
Γz
rz = Γz

zr = Ψ′

Nonzero Riemann Curvature Tensor Components:

Rt
φφt = rΦ′e−2Λ
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Rr
φφr = −rΛ′e−2Λ

Rr
zzr = (Ψ′′ +Ψ′2 −Ψ′Λ′)e2(Ψ−Λ)

Rr
ttr = −(Φ′′ + Φ′2 − Φ′Λ′)e2(Φ−Λ) (4)

Rz
ttz = −Ψ′Φ′e2(Φ−Λ)

Rz
φφz = rΨ′e−2Λ

Nonzero Ricci Tensor Components:

Rtt = (Φ′′ + Φ′2 − Φ′Λ′ +
1

r
Φ′ +Ψ′Φ′)e2(Φ−Λ)

Rrr = −Φ′′ − Φ′2 + Φ′Λ′ +
1

r
Λ′ −Ψ′′ −Ψ′2 + Λ′Ψ′

Rφφ = r(Λ′ − Φ′ −Ψ′)e−2Λ (5)

Rzz = −(Ψ′′ +Ψ′2 −Ψ′Λ′ +Ψ′Φ′ +
1

r
Ψ′)e2(Ψ−Λ)

Primes correspond to differentiation with respect to r, e.g., Φ′ = dΦ
dr
.

We would like to solve the Einstein field equations for the vacuum solution, which

corresponds to Gαβ = 0. It is easy to show, however, that it is sufficient to calculate

the solutions for Rαβ = 0. We begin with the standard definition of the Einstein

tensor, Gαβ = Rαβ − 1
2
Rgαβ. From this we can calculate the trace of the Einstein tensor

G := Gµ
µ = Rµ

µ− 1
2
Rgµµ = R−2R = −R and thus obtain the following relation between

the Ricci and Einstein tensors: Rαβ = Gαβ − 1
2
Ggαβ. Thus we see that if Rαβ = 0 then

Gαβ = 0, and conversely, if Gαβ = 0 then Rαβ = 0. Thus the solutions to Rαβ = 0 are

also the solutions to the vacuum Einstein field equations, Gαβ = 0.

By equating the nontrivial components of the Ricci tensor with zero, we obtain a

set of four ordinary differential equations for Φ, Λ, and Ψ. We further note that the

exponential function is never equal to zero, so the differential equations reduce to

(Φ′′ + Φ′2 − Φ′Λ′ +
1

r
Φ′ +Ψ′Φ′) = 0, (6)

−Φ′′ − Φ′2 + Φ′Λ′ +
1

r
Λ′ −Ψ′′ −Ψ′2 + Λ′Ψ′ = 0, (7)

(Λ′ − Φ′ −Ψ′) = 0, (8)

−(Ψ′′ +Ψ′2 −Ψ′Λ′ +Ψ′Φ′ +
1

r
Ψ′) = 0. (9)

We see that (8) can be solved for Λ′ in terms of the other two unknown functions, which

can then be substituted into (6), (7), and (9) to eliminate Λ′. Thus this system can be

reduced to

Λ′ = Φ′ +Ψ′, (10)

Φ′′ +
1

r
Φ′ = 0, (11)

Ψ′′ +
1

r
Ψ′ = 0, (12)

Φ′Ψ′ +
1

r
Φ′ +

1

r
Ψ′ = 0. (13)
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Now (10), (11), and (12) are linear second-order equations easily solved by separation of

variables, yielding Φ = ln(ra1) + ln(a2), Ψ = ln(rb1) + ln(b2), and Λ = ln(ra1+b1) + ln(c).

Also, (13) provides the additional constraint that a1b1 + a1 + b1 = 0. Thus the static,

cylindrically symmetric metric is

ds2 = −a22r
2a1dt2 + c2r2(a1+b1)dr2 + r2dφ2 + b22r

2b1dz2 (14)

with 0 ≤ φ < φ∗. The multiplicative constants a2 and b2 can easily be absorbed by

rescaling t and z, resulting in

ds2 = −r2a1dt2 + c2r2(a1+b1)dr2 + r2dφ2 + r2b1dz2; (15)

after each change of variables in what follows, we shall carry out this procedure again

without comment. Here we have shown that the coefficients must be powers of r as in

(15), with a1b1 + a1 + b1 = 0. Since we no longer have to worry about the constants a2
and b2, we now drop the subscripts on a1 and b1, and simply write the constraint as

ab+ a+ b = 0. (16)

The constant c can also be absorbed by rescaling r, which affects the dφ2 term by

bringing out another constant in front, resulting in

ds2 = −r2adt2 + r2(a+b)dr2 +K2r2dφ2 + r2bdz2. (17)

This leads to two natural conventions for the dφ2 term. One can now rescale φ so that the

constant K2 is absorbed, thus redefining the range φ∗ of φ. One could instead rescale φ

to fix its range to be from 0 to 2π, in which case the constant remains, multiplying either

dφ2 as in (17) or dr2 as in (15). In the work that follows, we use the first convention,

ds2 = −r2adt2 + r2(a+b)dr2 + r2dφ2 + r2bdz2, (18)

where the arbitrary constant is hidden in the periodicity, φ∗.

3. Special cases

We now examine in greater detail the relationship between a and b, which is illustrated

in figure 1.

We note the existence of several special points on these graphs and examine their

significance in various different forms of writing the cylindrical metric. One such point

is a = b = 0, which reduces the metric of (18) to

ds2 = −dt2 + dr2 + r2dφ2 + dz2. (19)

This describes a cone; that is, flat space missing a wedge of deficit angle ∆φ = 2π− φ∗.

If φ∗ > 2π, a wedge is added. Ordinary Minkowski space arises as the very special case

φ∗ = 2π. It is also useful to note the symmetry between the t and z coordinates, along

with the Lorentz symmetry under boosts in the z direction.

Another point of interest is b = −1, in which case a → ∞. The significance of this

(apparently singular) case can be better demonstrated if we rescale r, t, and z of (17)

(with the rescaling for r given explicitly in Section 4) to write the metric in the form

ds2 = −r−2bdt2 + r2(1+b)dφ2 + A2r2b(1+b)(dr2 + dz2) (20)
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(a) (b)

Figure 1. (a) Plot of the relationship between a and b. (b) Plot of the relationship

between a and a+ b.

with A ≡ c(1 + b).

If we now treat A as the arbitrary constant instead of b, the metric remains

nonsingular when b = −1 in the other terms. After rescaling r with r̄ = A1/[b(1+b)−1)]r

to absorb A, one gets

ds2 = −r̄−2bdt̄2+A[2(1+b)]/[−b(1+b)−1]r̄2(1+b)dφ2+r̄2b(1+b)dr̄2+r̄2b(1+b)dz̄2.(21)

We must now rescale φ as well in order to absorb the final constant in front of the dφ2

term; this changes the range φ∗. The metric becomes

ds2 = −r̄−2bdt̄2 + r̄2(1+b)dφ̄2 + r̄2b(1+b)dr̄2 + r̄2b(1+b)dz̄2, (22)

and at the point where b = −1 it reduces to

ds2 = −r̄2dt̄2 + dφ̄2 + dr̄2 + dz̄2. (23)

Under the transformation T = r̄ sinh t̄ and R = r̄ cosh t̄ we see that (23) is locally

equivalent to flat space,

ds2 = −dT 2 + dφ̄2 + dR2 + dz̄2 (24)

with φ̄ a periodic coordinate.

We also note that the general relationship in (16) is symmetric when a and b are

switched, corresponding to switching z and t. This observation suggests that the case

a = −1, b → ∞ is parallel to the foregoing one. To see its physical significance, we can

write the metric of (15) in the form

ds2 = L−2br2a
2+2a(−dt2 + dr2) + L2(1+b)r2+2adφ2 + L−2(1+b)r−2adz2 (25)

with L ≡ [(1 + b)/K](1+b)−2

. At the point where a = −1 and b → ∞, this reduces to

ds2 = −dt2 + dr2 + dφ2 + r2dz2. (26)
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Under the transformation Z = r sin z and R = r cos z we get

ds2 = −dt2 + dφ2 + dR2 + dZ2, (27)

and this once again looks like flat space locally, but with φ still a periodic coordinate.

We note that these locally flat solutions are not included in the general solution found

in Section 2 because there we fixed the coefficient of dφ2 to be r2, whereas in (24) and

(27) that coefficient is a constant.

4. Transforming between metric conventions

The equivalent forms (15), (20), and (25) all appear in [8]. The historical rationale for

the last two will be explained in Section 6.

We now examine how transforming from (15) to the other metric forms affects the

radial coordinate r. To go from (15) to (20), we must use r̄ = [c/(a + 1)]ra+1. We

see that in this case, the exponent of r is negative whenever a < −1 or, equivalently,

b < −1. Under this condition, r = 0 in our gauge choice corresponds to r̄ = ∞. To

go from our form of the metric to that of (25), we require r̄ = [c/(b + 1)]rb+1. Once

again, the exponent of r is negative whenever b < −1 (a < −1), and in that case r = 0

corresponds to r̄ = ∞ and vice versa.

Another natural choice for writing the metric, which we shall call “arc-length

gauge,” is

ds2 = −Adt2 +Bdφ2 + dr2 + Cdz2, (28)

where A, B, and C are once again functions of r only. In this case, to transform from

our gauge to (28) we require r̄ = [c/(a + b+ 1)]ra+b+1. Under this transformation, the

metric becomes

ds2 = −(Dr̄)[2a/(a+b+1)]dt2+dr̄2+(Dr̄)[2/(a+b+1)]dφ2+(Dr̄)[2b/(a+b+1)]dz2(29)

with D ≡ (a + b + 1)/c. The exponent of r in our definition of r̄ is negative whenever

a + b < −1, which occurs whenever b < −1 (a < −1). Thus in all three alternate

metric forms discussed here, r = 0 in our gauge corresponds to r̄ = ∞ in the new

gauge whenever a < −1 and b < −1 (hence a + b ≤ −4 from figure 1 (b)). The other

possibilities have a+ b ≥ 0 and r and r̄ running in the same direction.

It is also interesting to calculate W ≡ RαβµνRαβµν for the vacuum solution, because

this is the simplest nonzero curvature invariant (since R = 0 from Gαβ = 0). We get

the result that

RαβµνRαβµν = 4Cr−4(a+b+1) (30)

where C = 3a2 + 3b2 + 3a2b2 + 2ab+ 2a2b+ 2ab2. We see that the exponent is negative

whenever a + b > −1, and in that case, W → 0 as r → ∞. In the other case, W → ∞
as r → ∞ but W → 0 as r̄ → ∞, and in that case there is some ambiguity as to which

of these limits is the “outside” and which is the “inside”.
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5. Solutions of the Einstein equations with sources

We would like to find some cylindrical space-times that are not singular along the

central axis. This requires solving the Einstein equations in cases where T has nonzero

components. In order to proceed with this, we first require a few more basic quantities

and tensors encountered in general relativity. We present here the results for the Ricci

scalar, R, the Einstein tensor, Gµν , and the stress-energy tensor, Tµν , for the cylindrically

symmetric metric given in (2).

Ricci Scalar:

R = e−2Λ(−2Φ′′ − 2Φ′2 + 2Φ′Λ − 2Ψ′′ − 2Ψ′2 + 2Ψ′Λ′ − 2Ψ′Φ′ +
2

r
Λ′ − 2

r
Φ′ − 2

r
Ψ′) (31)

Nonzero Einstein Tensor Components:

Gtt = e2(Φ−Λ)(−Ψ′′ −Ψ′2 +Ψ′Λ′ +
1

r
Λ′ − 1

r
Ψ′)

Grr = Ψ′Φ′ +
1

r
Φ′ +

1

r
Ψ′

Gφφ = r2e−2Λ(Φ′′ + Φ′2 − Φ′Λ′ +Ψ′′ +Ψ′2 −Ψ′Λ′ +Ψ′Φ′) (32)

Gzz = e2(Ψ−Λ)(Φ′′ + Φ′2 − Φ′Λ′ − 1

r
Λ′ +

1

r
Φ′)

The components of the stress-energy tensor are defined by setting, for example, T r
r = pr

and lowering an index to get Trr = pre
2Λ. The other pressure components are defined

similarly, and T t
t = −ρ.

Nonzero Stress Tensor Components:

Ttt = ρe2Φ

Trr = pre
2Λ

Tφφ = pφr
2 (33)

Tzz = pze
2Ψ

From the Einstein field equations in natural units, Gµν = 8πTµν , and the conservation

laws, T αβ
;β = 0, we get the following five differential equations:

0 =
∂pr
∂r

+ pr(Φ
′ +Ψ′ +

1

r
) + ρΦ′ − pzΨ

′ − 1

r
pφ, (34)

4π(ρ+ pr + pφ + pz)e
2Λ = Φ′′ + Φ′2 − Φ′Λ′ +Ψ′Φ′ +

1

r
Φ′, (35)

4π(ρ+ pr − pφ − pz)e
2Λ =

−Φ′′ − Φ′2 + Φ′Λ′ +
1

r
Λ′ −Ψ′′ −Ψ′2 + Λ′Ψ′, (36)

4π(ρ− pr + pφ − pz)e
2Λ =

1

r
(Λ′ − Φ′ −Ψ′), (37)

4π(ρ− pr − pφ + pz)e
2Λ = −Ψ′′ −Ψ′2 +Ψ′Λ′ −Ψ′Φ′ − 1

r
Ψ′. (38)
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We can simplify these by summing (35) and (36) and subtracting (38). This yields

4π(ρ+ 3pr + pφ − pz)e
2Λ = 2Ψ′Φ′ +

1

r
Φ′ +

1

r
Ψ′ +

1

r
Λ′. (39)

We now add and subtract equation (37) from (39), resulting in

4π(2ρ+ 2pr + 2pφ − 2pz)e
2Λ = 2Ψ′Φ′ +

2

r
Λ′ (40)

4π(4pr)e
2Λ = 2Ψ′Φ′ +

2

r
(Φ′ +Ψ′). (41)

We now have a system of differential equations where equations (34), (35), (37), and

(38) can be solved for pr, pφ, pz, Φ, Ψ, and Λ (given ρ and an equation of state relating ρ

and the various pressures), and (41), which contains only lower-order derivatives of the

unknown functions, provides an additional constraint. The system of all five equations

is second-order in Φ and Ψ and first-order in Λ and pr.

Differentiating equation (41) with respect to r and using equations (34), (35), (38),

and (40) to substitute for p′r, Λ
′, Φ′′, and Ψ′′ yields an expression which reduces to 0 = 0;

thus equation (41) must hold for all r if it holds at any r.

5.1. Solutions with ρ = −pz, pr = pφ = 0

Solving these equations for arbitrary ρ, pr, pφ, and pz is rather difficult, so a simpler

case one can look at is when ρ = −pz and the other pressure components are zero. In

this case, the differential equations reduce to

0 = ρ(Φ′ +Ψ′), (42)

0 = Φ′′ + Φ′2 − Φ′Λ′ +Ψ′Φ′ +
1

r
Φ′, (43)

4π(2ρ)e2Λ =
1

r
(Λ′ − Φ′ −Ψ′), (44)

0 = −Ψ′′ −Ψ′2 +Ψ′Λ′ −Ψ′Φ′ − 1

r
Ψ′, (45)

0 = 2Φ′Ψ′ +
2

r
(Φ′ +Ψ′). (46)

From equation (42) we can see that Φ′ +Ψ′ = 0, allowing us to solve equation (44)

for Λ′ = 8πρre2Λ, which can easily be solved using integration by parts to get Λ for a

given ρ. From (46) and the fact that Φ′ + Ψ′ = 0, we also see that Φ′Ψ′ = 0. Thus

we can conclude that Φ′ = Ψ′ = 0, yielding Φ = a1 and Ψ = a2 (where a1 and a2 are

constants). The metric of the solution can be written as

ds2 = −dt2 + e2Λdr2 + r2dφ2 + dz2. (47)

This solution (with ρ = 1/(8πr20) where r0 is a constant) is widely known; it is usually

called the “cosmic string solution” or “Gott’s solution” [4,5]. Using this value of ρ, our

solutions yield

ds2 = −dt2 + [r20/(r
2
0 − r2)]dr2 + r2dφ2 + dz2, (48)
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which agrees with [4] after making the substitution r = sin(θ) and then rescaling

coordinates as necessary. This metric is Lorentz-invariant under boosts in the (z,t)

plane, and thus ρ and pz are independent of frame. If we did not have the condition

that ρ = −pz, the solution would not be Lorentz invariant in this way and ρ and pz
would not be frame-independent. Indeed, generically one would expect the density of

the matter in a string source to be affected by Lorentz contraction when one moves out of

the rest frame. But a Gott string, like cosmological dark energy (where all components

of p equal −ρ), has no preferred rest frame.

5.2. Numerical solutions

We now present some numerical solutions (calculated with Mathematica) for the case

when ρ is constant out to a radius R and zero outside of this radius, and the pressure

is isotropic in all directions, pr = pφ = pz ≡ p. This is analogous to isotropic pressure

in the spherically symmetric case. Since our differential equations involve factors of

1/r, they present problems when trying to solve the system numerically starting from

r = 0. In order to deal with this, we first make power series expansions of p, Φ, Ψ,

and Λ around r = 0. We keep terms up to order r in the p and Λ expansions (since

our differential equations involve first-order derivatives of these functions) and keep

terms up to order r2 in the Φ and Ψ expansions (since the differential equations involve

second-order derivatives of these functions), resulting in

p = p0 + p1r, (49)

Λ = Λ0 + Λ1r, (50)

Φ = Φ0 + Φ1r + Φ2r
2, (51)

Ψ = Ψ0 +Ψ1r +Ψ2r
2. (52)

We also take the initial conditions Ψ = Φ = Λ = 0 at r = 0 so that the corresponding

metric coefficients are equal to 1 at that point, and choose Ψ′ = Φ′ = 0 to get smooth

solutions at the axis. Equations (49)–(52) should satisfy our differential equations

near r = 0, so we substitute them into (34), (35), (37), (38), and (41) (taking

pr = pφ = pz = p), and obtain the relationships p1 = 0, Λ1 = 0, Φ2 = π(ρ + 3p0),

and Ψ2 = −π(ρ− p0). After choosing values for ρ and p0 = p(0), we can determine the

values of p, Φ, Ψ, and Λ at some small r away from 0; we take r = 0.01. We use these

as our initial conditions for the numerical calculations and obtain solutions for various

values of ρ and p0; two examples of such solutions are provided. For the case of ρ = 1,

p0 = 0.1, the results are given in figure 2. When ρ = 10, p0 = 1, the results are given in

figure 3. In both cases, the numerical solutions we obtain are not conformally flat (i.e.,

there are nonzero components of the Weyl tensor).

5.3. Connecting to exterior solution

After finding interior solutions numerically for pr = pφ = pz = p, we can then connect

them to the exterior vacuum solution found in Section 2. We take R to be the point
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(a) (b)

Figure 2. For ρ = 1 and p0 = 0.1 (interior): (a) Plot of Λ(r) (thick), Ψ(r) (normal),

and Φ(r) (dashed). (b) Plot of p(r).

(a) (b)

Figure 3. For ρ = 10 and p0 = 1 (interior): (a) Plot of Λ(r) (thick), Ψ(r) (normal),

and Φ(r) (dashed). (b) Plot of p(r).

where p(r) = 0, and use the values of Φ(R), Φ′(R), Ψ(R), Ψ′(R), and Λ(R) from the

numerical solutions as conditions to determine the unknown coefficients (a1, a2, b1, b2,

and c) of Φ, Ψ, and Λ from the vacuum case. We must match our interior solution

with the most general vacuum solution from Section 2 which includes all the arbitrary

constants, since we chose our initial conditions so that the interior metric coefficients

are all 1 at r = 0. Because of this, we are not free to scale away a2, b2, and c, and we

must keep them in the metric in order to match our two sets of solutions.

To perform the matching, we impose the conditions that Φ(R), Φ′(R), Ψ(R), Ψ′(R),

and Λ(R) must be continuous at the boundary where p = 0. These five continuity

conditions provide us with the information needed to find values for the five arbitrary

constants from the vacuum solutions. After matching the solutions in this manner, Λ′(R)

is not necessarily continuous at the boundary. To explain this, it is helpful to look at the

metric in the arc-length gauge, given in (28). Obviously one wants A, B, and C to be

continuous so that the metric is continuous. Since r has the same geometrical meaning

on both sides of the surface, a nonsingular metric should also have continuous A′, B′,

and C ′ (where primes indicate differentiation with respect to the radial coordinate in
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the arc-length gauge). Technically, this condition is called “continuity of the second

fundamental form” [9]. Also, in this case, the coefficient of dr2 is unity, so it and its

derivative are automatically continuous. Now letting r̄ be the radial coordinate in arc-

length gauge, (28), and letting r be the radial coordinate in tangential gauge, (2), we

can see that dr̄
dr

= e2Λ. Hence, after imposing the conditions that Λ, Φ, and Ψ must

be continuous, continuity of the second fundamental form in arc-length gauge is merely

equivalent to continuity of dΦ
dr

and dΨ
dr

in tangential gauge, and the derivative of the

coefficent of dφ2 in tangential gauge is automatically continuous as well. Thus there are

no conditions which require that dΛ
dr

also be continuous at the boundary.

The results for the two sample cases given above are presented in the figures. When

ρ = 1, p0 = 0.1, we get that R = 0.1486, and the resulting exterior solutions are plotted

in figure 4. For the case of ρ = 10, p0 = 1, we get R = 0.047 91, and the exterior

solutions are plotted in figure 5. Numerical constants for these solutions are given in

table 1. Also, after rescaling coordinates appropriately in order to put the metric in

the form of equation (18), the range of φ changes as well; it had to be 2π for the inner

solution to guarantee smoothness at the origin, and thus the outer solution initially

has range 2π when matched with the inner solution. The new value of φ∗ is given by

φ∗ = (2π)c−1/(a1+b1+1). The values of φ∗ for the two solutions described above are also

given in the table.

Bičák et al. [10] have done a more general study of static perfect-fluid cylinders,

including numerical work on incompressible cylinders and their external vacuum

solutions. We have compared our numerical results with theirs and found that they

agree fairly well. We made comparisons with their parameters m and C, which are

related to our notation by m = −b1 and C = (2π/φ∗)(a1 + 1)[−1/(a1+b1+1)]. The results

are presented in table 2 and table 3.

In the spherically symmetric case, the Buchdahl theorem [7, p 269] requires that

R > 9
4
M for any stellar model, where M = 4

3
πρR3. This implies that R2ρ < 1

10
,

where R2ρ is a dimensionless quantity. Although this theorem does not apply to the

cylindrically symmetric case, it is interesting to note that the inequality does hold in

the examples studied above.

Figure 4. For ρ = 1 and p0 = 0.1 (exterior): Plot of Λ(r) (thick), Ψ(r) (normal), and

Φ(r) (dashed).
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Figure 5. For ρ = 10 and p0 = 1 (exterior): Plot of Λ(r) (thick), Ψ(r) (normal), and

Φ(r) (dashed).

Table 1. Numerical constants for exterior solution when ρ = 1 and p0 = 0.1 (second

column), and ρ = 10 and p0 = 1 (third column).

R 0.1486 0.047 91

R2ρ 0.022 08 0.022 96

a1 0.2052 0.2136

b1 −0.1703 −0.1761

a2 1.627 2.114

b2 0.6722 0.5435

c 1.279 1.342

φ∗ 4.954 4.732

Table 2. Comparison of our numerical results with those of Bičák et al. [10], for ρ = 1

and p0 = 0.1.

Bičák et al. our results

m 0.1696 0.1703

C 1.05901 1.05901

Table 3. Comparison of our numerical results with those of Bičák et al. [10], for

ρ = 10 and p0 = 1.

Bičák et al. our results

m 0.1696 0.1761

C 1.10063 1.10179

6. History

The static, cylindrically symmetric vacuum solutions were found in the early 20th

century by Weyl [2] and Levi-Civita [3]. They were interested in the more general

problem of static geometries that are merely axially symmetric, that is, depend on z as

well as r. It was therefore convenient to use coordinates that treat r and z on the same

footing, so the Weyl–Levi-Civita solution was found in the form (20).
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Similarly, Marder [8], building on work of Rosen [11], studied cylindrically

symmetric gravitational waves and hence treated r and t alike, obtaining the static

solution in the form (25) (four decades after [2,3]). Marder’s paper, which also displays

versions (15) and (20), was very helpful in the analysis of vacuum solutions in the present

paper.

The arc-length gauge (28), leading to solution (29), was probably first used by

Evans [12]; it appears also in much of the cosmic-string literature, such as [6], although

the Weyl–Levi-Civita convention is also popular there. Of course, there are many other

possible gauge choices; for example, Bičák et al. [10] use the convention (in our notation

(1)) Φ = −Λ.

During the 1980s, cylindrical solutions received broad attention when the (locally

flat) cone solutions were studied as representing the space-time outside a one-

dimensional concentration of matter or gauge-field energy, a “cosmic string”. Classic

papers by Taub [13] and Vilenkin [14] considered infinitely thin sources; nonsingular

solutions with sources of finite radius were constructed by Gott [4] and Hiscock [5]; and

both were studied by many more physicists. With few exceptions (e.g., [15, 16]), the

possibility that the exterior of a cosmic string might be one of the nonflat Weyl–Levi-

Civita solutions was not widely recognized, except when the theory was generalized

to include a cosmological constant [17, 18] (more recently studied in [19]). Physical

enthusiasm for cosmic strings as realistic cosmological objects has diminished in recent

years under the pressure of new observational data.

Nevertheless, research on static cylindrical solutions with interior sources and

general Weyl–Levi-Civita exteriors has continued and intensified in recent years

[9, 10, 12, 19–34]. We are not able to provide a complete review of the literature here.

7. Conclusion

Cylindrical symmetry in general relativity turns out to be similar to spherical symmetry

in many ways but quite different in others. The only static vacuum spherical solutions

are the Schwarzschild metrics parametrized by mass, but, contrary to popular belief,

there are static vacuum cylindrical solutions other than the cone, or cosmic string, spaces

parametrized by defect angle. A cone solution is Lorentz-invariant along the cylinder

axis and hence cannot arise from a matter source (at least in the small-radius limit)

unless the latter has a very unusual equation of state. We have presented numerical

solutions with more conventional interior sources and more general exterior geometry.

The construction of the various solutions presented here illustrates several

instructive points. The choice of gauge (coordinate system) is always a major issue

in relativity; the same space-time can look quite different in different gauges, and how

(and whether) to choose a standard gauge or “normal form” for a given problem is not

always obvious. For our problem there are several natural ways to fix the gauge, and we

have taken pains to describe them all and how they are related. Even after a definition

of radial coordinate has been selected, further steps to a normal form can be taken by
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linear rescaling of the coordinates. But, as our final calculation shows, sometimes this

progress must be undone to match solutions for different regions properly.

The structure of the Einstein equation system is nontrivial. There is one more

equation than one might naively expect. The extra equation serves as a constraint

on the data. For the cylindrical vacuum solutions this constraint is a simple algebraic

relation among the parameters, but for our interior solutions, extra work was needed to

verify that the constraint equation is consistent. The differential orders of the remaining

equations need to be considered carefully in order to choose the correct sort of initial

data on the axis and to match the interior solution properly to an exterior vacuum

solution.

Finally, we observed some surprising ambiguities of interpretation. On the left

branch of the vacuum solutions (see either half of figure 1) an increasing radial metric

component corresponds to decreasing behavior of some of the other metric components;

therefore, what is naturally considered the radial coordinate in our gauge is naturally

considered to be the reciprocal of such a coordinate in other gauges. (That is, our

axis is previous authors’ infinity.) Also, two special solutions, (19) and (27), are not

really “cylindrical” spaces, but rather representations of flat space-times in nonstandard

coordinate systems.
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