10 research outputs found
Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave
The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed stave concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support. Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5μm pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US. We present results of the first 20 chip ABCN25 ASIC hybrids for these sensors, results of the first prototype 5120 strip module built with 40 ABCN25 read-out ASICs, and the status of the hybrids and modules being developed for the ATLAS tracker upgrade stave programme. © 2010 Elsevier B.V
Recommended from our members
The ABC130 barrel module prototyping programme for the ATLAS strip tracker
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: An early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests
Recommended from our members
The ABC130 barrel module prototyping programme for the ATLAS strip tracker
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: An early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests
Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker
The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS
devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the
ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2Ă—1014 n/cm2, corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to
ensure that the chips assembled into modules meet the rigorous acceptance criteria.</p
Beam tests of ATLAS SCT silicon strip detector modules
The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3×1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme. © 2004 Elsevier B.V. All rights reserved
Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors
The ATLAS (A Toroidal LHC ApparatuS) Inner Detector provides charged particle
tracking in the centre of the ATLAS experiment at the Large Hadron Collider (LHC). The Inner
Detector consists of three subdetectors: the Pixel Detector, the Semiconductor Tracker (SCT), and
the Transition Radiation Tracker (TRT). This paper summarizes the tests that were carried out at the
final stage of SCT+TRT integration prior to their installation in ATLAS. The combined operation
and performance of the SCT and TRT barrel and endcap detectors was investigated through a series
of noise tests, and by recording the tracks of cosmic rays. This was a crucial test of hardware and
software of the combined tracker detector systems. The results of noise and cross-talk tests on
the SCT and TRT in their final assembled configuration, using final readout and supply hardware
and software, are reported. The reconstruction and analysis of the recorded cosmic tracks allowed
testing of the offline analysis chain and verification of basic tracker performance parameters, such
as efficiency and spatial resolution, in combined operation before installation