44 research outputs found

    Mitochondrial dysfunction induced by a SH2 domain-Targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells

    Get PDF
    In addition to its canonical role in nuclear transcription, signal transducer and activator of transcription 3 (STAT3) is emerging as an important regulator of mitochondrial function. Here, we demonstrate that a novel inhibitor that binds with high affinity to the STAT3 SH2 domain triggers a complex cascade of events initiated by interference with mitochondrial STAT3 (mSTAT3). The mSTAT3\u2013drug interaction leads to mitochondrial dysfunction, accumulation of proteotoxic STAT3 aggregates, and cell death. The cytotoxic effects depend directly on the drug\u2019s ability to interfere with mSTAT3 and mitochondrial function, as demonstrated by site-directed mutagenesis and use of STAT3 knockout and mitochondria-depleted cells. Importantly, the lethal consequences of mSTAT3 inhibition are enhanced by glucose starvation and by increased reliance of cancer cells and tumor-initiating cells on mitochondria, resulting in potent activity in cell cultures and tumor xenografts in mice. These findings can be exploited for eliciting synthetic lethality in metabolically stressed cancer cells using highaffinity STAT3 inhibitors. Thus, this study provides insights on the role of mSTAT3 in cancer cells and a conceptual framework for developing more effective cancer therapies

    Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells

    Get PDF
    Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials

    Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells

    Get PDF
    In addition to its canonical role in nuclear transcription, signal transducer and activator of transcription 3 (STAT3) is emerging as an important regulator of mitochondrial function. Here, we demonstrate that a novel inhibitor that binds with high affinity to the STAT3 SH2 domain triggers a complex cascade of events initiated by interference with mitochondrial STAT3 (mSTAT3). The mSTAT3–drug interaction leads to mitochondrial dysfunction, accumulation of proteotoxic STAT3 aggregates, and cell death. The cytotoxic effects depend directly on the drug’s ability to interfere with mSTAT3 and mitochondrial function, as demonstrated by site-directed mutagenesis and use of STAT3 knockout and mitochondria- depleted cells. Importantly, the lethal consequences of mSTAT3 inhibition are enhanced by glucose starvation and by increased reliance of cancer cells and tumor-initiating cells on mitochondria, resulting in potent activity in cell cultures and tumor xenografts in mice. These findings can be exploited for eliciting synthetic lethality in metabolically stressed cancer cells using high-affinity STAT3 inhibitors. Thus, this study provides insights on the role of mSTAT3 in cancer cells and a conceptual framework for developing more effective cancer therapies

    Tumor Cell Plasticity and Angiogenesis in Human Melanomas

    Get PDF
    Recent molecular studies provide evidence for a significant transcriptional plasticity of tumor cell subpopulations that facilitate an active contribution to tumor vasculature. This feature is accompanied by morphological changes both in vitro and in vivo. Herein, we investigated the morphological plasticity of tumor cells with special focus on vasculogenic mimicry and neovascularisation in human melanoma and mouse xenografts of human melanoma cell lines. In melanoma xenograft experiments, different vessel markers and green fluorescent protein expression were used to show how melanoma cells contribute to neovascularization. Additionally, we analyzed neovascularization in 49 primary melanomas and 175 melanoma metastases using immunostaining for blood (CD34) and lymphatic (D2–40) vessel-specific markers. We found significantly more lymphatic vessels in primary melanomas than in melanoma metastases (p<0.0001). In contrast to the near absence of lymphatic vessels within metastases, we found extensive blood micro-neovascularization. Blood micro-neovascularization was absent in micro metastases (less than 2 mm). A significant inverse correlation between Glut-1 expression (implying local hypoxia) and the presence of microvessels indicates their functional activity as blood vessels (p<0.0001). We suggest that the hypoxic microenvironment in metastases contributes to a phenotype switch allowing melanoma cells to physically contribute to blood vessel formation

    Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors.

    Get PDF
    It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutations resulted in impaired degradation of BETs, promoting their resistance to pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations mapping to the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat patients with endometrial but not prostate cancer who harbor SPOP mutations

    Mitochondrial fission promotes self-renewal and tumorigenic potential in prostate cancer

    No full text
    The emergence of therapy-resistant cancer stem cells (CSCs) limit the efficacy of prostate cancer treatment. Using genetic knockdown and chemical inhibitors, we demonstrate the critical role of Bromodomain Containing 4 (BRD4) in promoting mitochondrial fission and sustaining CSC expansion. These findings provide a new paradigm for developing novel treatment strategies for prostate cancer

    Pharmacodynamic and Pharmacokinetic Properties of Full Phosphorothioate Small Interfering RNAs for Gene Silencing In Vivo

    No full text
    State-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite characterization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability, without greatly compromising potency. We found that its stability in vitro matched that of nanoparticle-free patisiran in serum and surpassed it in liver tritosome extracts, although it did not reach the stability of the fitusiran siRNA core structure. Liver and kidney were the main sites of accumulation after its subcutaneous administration in mice. Despite the lack of a delivery agent-free antitumor effect, we anticipate our study to be a starting point to develop alternative siRNA scaffolds that can be degraded into naturally-occurring metabolites and help alleviate the aforementioned challenges. Furthermore, Lin28B is a promising target for cancers, and the development of such simplified siRNA analogs, possibly together with novel targeting units, holds potential.ISSN:2159-3337ISSN:2159-334

    Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells (EMBO reports, February 2003) (Correction)

    No full text
    Constitutive expression of Wnt1 and Wnt5a in HC11 mammary cells led to elevated TCF transcriptional activity. Intriguingly, Wnt-expressing cells also displayed activation of ErbB1 and mitogen-activated protein kinase (MAPK), in contrast to control HC11 cells, which did not. Furthermore, conditioned media harvested from Wnt-expressing cells stimulated ErbB1 and the MAPK cascade when added to control cells. This process was rapid and could be blocked by an ErbB1 antibody that interferes with ligand binding and by matrix metalloproteinase (MMP) inhibitors. These results suggest that in mammary cells Wnt binding to its receptor, Frizzled (Fz), transactivates ErbB1, probably by MMP-mediated release of soluble ErbB1 ligands. Importantly, Wnt-transactivated ErbB1 was responsible for MAPK activation and the increased levels of cyclin D1 present in the Wnt-expressing HC11 cells. Our finding that Wnts transactivate ErbB1 in addition to stimulating the prototypic β-catenin/TCF pathway may help to explain why wnt1 is a potent oncogene in the mammary gland

    Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth

    Full text link
    Human melanoma is composed of distinct cell types reminiscent of neural crest derivatives and contains multipotent cells that express the neural crest stem cell markers CD271(p75(NTR)) and Sox10. When isolated from solid tumors by using a method that leaves intact cell surface epitopes, CD271-positive, but not CD271-negative, cells formed tumors on transplantation into nude or nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. These tumors fully mirrored the heterogeneity of the parental melanoma and could be passaged more than 5 times. In contrast, in more immunocompromised NOD/SCID/IL2rγ(null) mice, or in natural killer cell-depleted nude or NOD/SCID mice, both CD271-positive and CD271-negative tumor cell fractions established tumors. However, tumors resulting from either fraction did not phenocopy the parental tumors, and tumors derived from the CD271-negative cell fraction could not be passaged multiple times. Together, our findings identify CD271-positive cells as melanoma stem cells. Our observation that a relatively high frequency of CD271/Sox10-positive cells correlates with higher metastatic potential and worse prognosis further supports that CD271-positive cells within human melanoma represent genuine cancer stem cells. Cancer Res; 71(8); 3098-109. ©2011 AACR
    corecore