207 research outputs found

    Direct measurements of the penetration depth in a superconducting film using magnetic force microscopy

    Get PDF
    We report the local measurements of the magnetic penetration depth λ\lambda in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.Comment: 3 pages, 4 figures, submitted to APL on 08/18/0

    Strong Enhancement of the Critical Current at the Antiferromagnetic Transition in ErNi2B2C Single Crystals

    Get PDF
    We report on transport and magnetization measurements of the critical current density Jc in ErNi2B2C single crystals that show strongly enhanced vortex pinning at the Neel temperature TN and low applied fields. The height of the observed Jc peak decreases with increasing magnetic field in clear contrast with that of the peak effect found at the upper critical field. We also performed the first angular transport measurements of Jc ever conducted on this compound. They reveal the correlated nature of this pinning enhancement, which we attribute to the formation of antiphase boundaries at TN.Comment: 3 figure

    The influence of structural defects on intra-granular critical currents of bulk MgB2

    Full text link
    Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder-dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.Comment: 4 pages, 4 figures, to be published in IEE Transactions in Applied Superconductivit

    Large magnetic penetration depth and thermal fluctuations in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal

    Get PDF
    We have measured the temperature dependence of the absolute value of the magnetic penetration depth λ(T)\lambda(T) in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal using a low-temperature magnetic force microscope (MFM). We obtain λab\lambda_{ab}(0)≈\approx1000 nm via extrapolating the data to T=0T = 0. This large λ\lambda and pronounced anisotropy in this system are responsible for large thermal fluctuations and the presence of a liquid vortex phase in this low-temperature superconductor with critical temperature of 11 K, consistent with the interpretation of the electrical transport data. The superconducting parameters obtained from λ\lambda and coherence length ξ\xi place this compound in the extreme type \MakeUppercase{\romannumeral 2} regime. Meissner responses (via MFM) at different locations across the sample are similar to each other, indicating good homogeneity of the superconducting state on a sub-micron scale

    The Effect of Splayed Pins on Vortex Creep and Critical Currents

    Full text link
    We study the effects of splayed columnar pins on the vortex motion using realistic London Langevin simulations. At low currents vortex creep is strongly suppressed, whereas the critical current j_c is enhanced only moderately. Splaying the pins generates an increasing energy barrier against vortex hopping, and leads to the forced entanglement of vortices, both of which suppress creep efficiently. On the other hand splaying enhances kink nucleation and introduces intersecting pins, which cut off the energy barriers. Thus the j_c enhancement is strongly parameter sensitive. We also characterize the angle dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure

    Depinning of a superfluid vortex line by Kelvin waves

    Full text link
    We measure the interaction of a single superfluid vortex with surface irregularities. While vortex pinning in superconductors usually becomes weaker at higher temperatures, we find the opposite behavior. The pinning steadily increases throughout our measurement range, from 0.15Tc to over 0.5Tc. We also find that moving the other end of the vortex decreases the pinning, so we propose Kelvin waves along the vortex as a depinning mechanism.Comment: 5 figures; substantial revision including 2 new figure
    • …
    corecore