30 research outputs found

    CD25 deficiency: A new conformational mutation prevents the receptor expression on cell surface

    Get PDF
    CD25 deficiency is a very rare autosomal recessive disorder that shows a clinical phenotype highly overlapping IPEX syndrome with an increased susceptibility to viral, bacterial, and fungal infections. It is due to mutations in the IL2R alpha gene that codes for the a subunit of the IL2 receptor complex.Here we report the characterization of a novel IL2R alpha gene mutation leading to a severe protein conformational alteration that abrogates its cell surface expression in a child presenting with early-onset IPEX-like disorder. Cytofluorimetric analysis revealed the total absence of CD25 cell surface expression and addressed IL2R alpha molecular investigation.The early clinical and molecular diagnosis of CD25 deficiency in this patient promptly led to hematopoietic stem cell transplantation (HSCT), allowing complete resolution of the symptoms and definitive cure of the disease

    β3-Adrenoreceptor Blockade Reduces Hypoxic Myeloid Leukemic Cells Survival and Chemoresistance

    Get PDF
    β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias

    Clinical, Immunological, and Molecular Heterogeneity of 173 Patients With the Phenotype of Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked (IPEX) Syndrome

    Get PDF
    Background: Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) Syndrome is a rare recessive disorder caused by mutations in the FOXP3 gene. In addition, there has been an increasing number of patients with wild-type FOXP3 gene and, in some cases, mutations in other immune regulatory genes.Objective: To molecularly asses a cohort of 173 patients with the IPEX phenotype and to delineate the relationship between the clinical/immunologic phenotypes and the genotypes.Methods: We reviewed the clinical presentation and laboratory characteristics of each patient and compared clinical and laboratory data of FOXP3 mutation-positive (IPEX patients) with those from FOXP3 mutation-negative patients (IPEX-like). A total of 173 affected patients underwent direct sequence analysis of the FOXP3 gene while 85 IPEX-like patients with normal FOXP3 were investigated by a multiplex panel of “Primary Immune Deficiency (PID—related) genes.”Results: Forty-four distinct FOXP3 variants were identified in 88 IPEX patients, 9 of which were not previously reported. Among the 85 IPEX-like patients, 19 different disease-associated variants affecting 9 distinct genes were identified.Conclusions: We provide a comprehensive analysis of the clinical features and molecular bases of IPEX and IPEX-like patients. Although we were not able to identify major distinctive clinical features to differentiate IPEX from IPEX-like syndromes, we propose a simple flow-chart to effectively evaluate such patients and to focus on the most likely molecular diagnosis. Given the large number of potential candidate genes and overlapping phenotypes, selecting a panel of PID-related genes will facilitate a molecular diagnosis

    Enzymatic decolorization of spent textile dyeing baths composed by mixtures of ynthetic dyes and additives

    No full text
    The effects of different components of real dyeing bath formulations, such as the equalizing and fixing additives-acids, salts, and surfactants-on the decolorization catalyzed by Funalia trogii enzymatic extracts, were investigated to understand their influence on the recalcitrance to biodegradation of this type of wastewater. The decolorization of selected dyes and dye mixtures after tissue dyeing was performed in the presence/absence of auxiliary compounds. All spent dyeing baths were enzymatically decolorized to different extents, by the addition of extracts containing laccase only or laccase plus cellobiose dehydrogenase. Whereas surfactant auxiliaries, in some instances, inhibit the decolorization of spent dyeing baths, in several occurrences the acid/salt additives favor the enzymatic process. In general, the complete spent dyeing formulations are better degraded than those containing the dyes only. The comparison of extracellular extracts obtained from spent straws from the commercial growth of Pleurotus sp. mushrooms with those from F. trogii reveals similar decolorization extents thus allowing to further reduce the costs of bioremediatio

    Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy.

    No full text
    Objective. The aims of this study were: 1) to investigate forkhead box P3 (FOXP3) expression in patients with Kawasaki disease (KD), exploring possible differences during the acute phase and after defervescence; 2) to evaluate a possible association of the FOXP3 single nucleotide polymorphism (SNP) 543 (SNP ID: rs2232367) with KD. Methods. FOXP3 expression was evaluated on 8 children with KD and 15 healthy children by flow cytometry and Real-Time polymerase chain reaction (RT-PCR). FOXP3 SNP 543 was genotyped by denaturing high-performance liquid chromatography (DHPLC) and sequencing on DNA samples from 58 additional children with KD and 114 healthy donors. Results. The frequencies of CD4+CD25 +FOXP3+ regulatory T cells were significantly (p=0.0002) lower during the acute phase of KD than in sex-and agematched healthy donors (median % + SD: 4.8\ub11.3 vs. 7.7\ub11.7) and a similar tendency was revealed for FOXP3 mRNA transcripts (p<0.0001). FOXP3 expression increased significantly, at both protein and mRNA levels, after intravenous immunoglobulin (IVIG) therapy treatment and achieving complete remission of disease (at least 48 hrs; median 9.5 days, range 2-30). Of the 58 patients screened, only one female subjects (1.7%) carried the presence of 543 SNP in heterozygosis (C>T; for a total of 1 allele out of 88), with no difference between KD patients and controls (0.0%, 0/203 alleles). Conclusion. Our data reinforces the notion of an impaired immunoregulation in KD, suggesting also a role of IVIG treatment in modifying the Treg compartment. FOXP3 SNP 543 do not seem to be involved in susceptibility to KD in Italian childre
    corecore