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Abstract 

Progression through the stages of lymphocyte development requires coordination of the cell 

cycle. Such coordination ensures genomic integrity while cells somatically rearrange their 

antigen receptors (in a process called VDJ recombination) and upon successful 

rearrangement, expands their pools of progenitor lymphocytes. Here, we show that in 

developing B lymphocytes the RNA binding proteins (RBPs) ZFP36L1 and ZFP36L2 are 

critical for maintaining quiescence prior to pre-B cell receptor (BCR) expression and for re-

establishing quiescence following pre-BCR-induced expansion.  These RBPs suppress an 

evolutionarily conserved post-transcriptional regulon consisting of mRNAs whose protein 

products cooperatively promote transition into the S phase of the cell cycle. This mechanism 

promotes VDJ recombination and effective selection of Igµ+ cells at the pre-BCR checkpoint. 

 

 

 

One sentence summary: The RNA binding proteins ZFP36L1 and ZFP36L2 enforce 

quiescence on developing lymphocytes by suppressing mRNAs that promote cell cycle 

progression. 
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Lymphocyte development is characterized by dynamic shifts between quiescence and 

proliferation. Quiescence promotes VDJ recombination, the process that generates 

immunoglobulin and T cell receptor genes, since RAG2 protein expression is restricted to the 

G0/G1 phase of the cell cycle (1-3). In B cells VDJ recombination leads to expression of an 

immunoglobulin-µ (Igµ) heavy chain that, together with the surrogate light chains, forms a pre-

B cell receptor (pre-BCR).  Signals from the pre-BCR terminate the recombination process and 

trigger rapid proliferation associated with passage through the pre-BCR checkpoint (4). Later 

signals from the pre-BCR re-establish quiescence allowing immunoglobulin light chain 

recombination (5, 6) (fig. S1A).  

The ZFP36 family of RNA binding proteins (RBPs) regulate gene expression post-

transcriptionally by promoting mRNA decay (7).  This requires their direct binding to AU-rich 

elements (AREs) located in the 3’ untranslated regions (UTRs) of mRNAs.  ZFP36 destabilizes 

cytokine mRNAs and exerts an anti-inflammatory function (8, 9).  In addition, ZFP36 

antagonizes Myc-induced lymphomagenesis (10), and its paralogs ZFP36L1 and ZFP36L2 

have redundant roles in preventing T cell leukemia in mice (11) however, the pathways 

controlled by these RBPs remain poorly understood. 

All three ZFP36 family mRNAs were expressed throughout B cell development (fig. S1B).  

Conditional genetic deletion demonstrated redundant roles for ZFP36L1 and ZFP36L2 in early 

B cell development that cannot be compensated for by endogenous ZFP36 and were 

independent of NOTCH1, a known target of these RBP (fig. S2) (11), thus we generated mice 

where Zfp36l1 and Zfp36l2 are deleted in pro-B cells (fig. S3).  For simplicity Zfp36l1fl/fl 

Zfp36l2fl/fl Mb1cre/+ mice will be referred to as DCKOs (double conditional knockout) and their 

Zfp36l1fl/fl Zfp36l2fl/fl Mb1+/+ littermates as controls.  DCKO mice displayed reduced cellularity 

from the pre-B stage onwards culminating in a 98% reduction in mature-B cell number (Fig. 

1A, B). The proportion of CD43+ cells expressing Igµ was greatly diminished (Fig. 1C), and a 

variable proportion of DCKO cells transited the pre-BCR checkpoint without Igµ expression 

(Fig. 1D).  Within the compartment enriched for pro-B cells, DCKOs had reduced proportions 

of cells containing one or two V to DJ recombined IgH alleles (Fig. 1E, fig. S4). At later 

developmental stages the DCKOs failed to increase the proportion of recombined IgH alleles 

to control levels. Notably the decrease in the proportion of V to DJ recombined IgH alleles and 

Igμ+ cells within the pro/early pre-B cell compartment of DCKOs is similar suggesting that the 

failure to express Igμ is not due to an increase in non-productive joints.  Similarly, V-J 

recombination of the Igκ light chain locus was reduced in DCKO late pre-B cells (Fig. 1F). 
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Thus DCKO mice display reduced B cell numbers, delayed VDJ recombination and failure of 

the pre-BCR checkpoint.  

Expression of a productively rearranged Igµ-transgene failed to restore late pre-, immature-, or 

mature-B cell numbers in DCKO mice indicating that reduced VDJ recombination of IgH is 

not the sole defect (fig. S5). Consistent with this we observed an increase in apoptosis of DCKO 

Igµ+ late pre-B cells (Fig. 1G).  The increased apoptosis was not susceptible to inhibition by 

BCL2, and we did not detect a DNA damage response (fig. S6). Notably, in both DCKOs and 

controls a substantial number of Igµ- cells in the late pre-B cell gate were apoptotic indicating 

that although Igµ- DCKO cells were aberrantly selected, they did not bypass the requirement 

of pre-BCR expression for continued survival (Fig. 1H).   

Within mRNAs overrepresented in DCKO late pre-B cell transcriptomes there was a strong 

enrichment for pathways promoting cell cycle progression (Fig. 2A, B, tables S1-4).  Since 

VDJ recombination is inhibited by cell cycle progression, and the pre-BCR checkpoint is 

mediated by the selective proliferation of Igµ+ cells, we hypothesized that these aspects of the 

phenotype might be explained by uncontrolled cell cycle progression in DCKOs.  The 

apoptosis of DCKO late pre-B cells could be due to delayed light chain recombination or 

overexpression of cell cycle regulators; these cells are destined to be quiescent and therefore 

may not tolerate activation of the E2F pathway, which regulates transition through the cell 

cycle and DNA synthesis. Indeed, loss of E2f1 has been demonstrated to increase late pre-B 

cell numbers (12).   

Cell cycle analysis showed an increase in the proportion of DCKO pro-B cells in S-phase (Fig. 

2C, D). The cyclin dependent kinase inhibitor p27 (CDKN1B) is known to regulate the cell 

cycle during pre-B cell development (5) and high expression of p27 is a marker of cellular 

quiescence (13).  The proportion of p27high G0 cells was markedly reduced in DCKO pro-B 

cells, and was moderately reduced in DCKO early and late pre-B cells (Fig. 2E, F). Thus 

ZFP36L1 and ZFP36L2 impose quiescence on developing B cells and inhibit S-phase entry 

prior to expression of the pre-BCR.  

We demonstrated the transcription factors induced by the pre-BCR that promote quiescence in 

late pre-B cells were expressed in DCKOs and p27 mRNA induced; additionally factors 

mediating VDJ recombination were expressed and the Igκ locus was transcriptionally active 

(fig. S7). Therefore DCKO late pre-B cells are transcriptionally poised to enter quiescence and 
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undergo VDJ recombination, but post-transcriptional regulation mediated by ZFP36L1 and 

ZFP36L2 is required for the full activation of these processes.     

Consistent with their role in promoting mRNA decay, ZFP36L1-bound transcripts identified 

by crosslinking immunoprecipitation (iCLIP) (14) were found to be increased in abundance in 

DCKO late pre-B cells (Fig. 3A). Increased mRNA abundance in DCKO late pre-B cells was 

also associated with AREs in the 3’UTRs of mRNAs (fig. S8A), and with Zfp36 binding sites 

in the human homologs of mouse transcripts (15) (fig. S8B, C). Thus, the specificity of ZFP36 

family proteins is generally conserved across family members, species and cell types.   

ZFP36L1 binding sites were typically associated with AREs (table S5). Amongst mRNAs 

identified in the iCLIP, cell cycle pathways were strongly enriched (tables S6 and S7) further 

connecting ZFP36L1 to cell cycle regulation.  Within mRNAs implicated in cell cycle control 

we identified several candidate targets that have ZFP36L1 binding sites, or AREs, and 

significant increases in mRNA abundance in DCKO late pre-B cells (Fig. 3B, table S8). We 

validated the activity of the ZFP36L1 binding site in Ccne2 (fig. S9). Notably, among the 

putative targets are the mRNAs encoding PIM family kinases and components of the CDK2-

CyclinE complex that phosphorylates p27, promoting its destruction (16, 17); this mechanism 

is consistent with the reduced p27 protein, but equivalent p27 mRNA in DCKO late pre-B cells.  

Furthermore, the AREs in putative target mRNAs with roles in cell cycle progression were 

very highly conserved within mammals (Fig. 3C).  These data strongly suggest that ZFP36L1 

and ZFP36L2 directly regulate an evolutionarily-conserved post-transcriptional regulon 

controlling cell cycle progression (18).  

A post-transcriptional mechanism for enforcing quiescence is well suited to the events 

surrounding the pre-BCR checkpoint because it can be reversed more rapidly than changes 

mediated at the level of transcription. ZFP36L1 and ZFP36L2 are phosphorylated by 

MAPKAP2 downstream of p38 MAPK and this inhibits their mRNA destabilizing effects (19).  

Importantly, p38 activity is induced downstream of the pre-BCR providing a mechanism to 

relieve the repression of mRNAs encoding cell cycle regulators by ZFP36L1 and ZFP36L2 

(20).  To examine the effects of ZFP36L1 overexpression at the pre-BCR checkpoint we 

generated mice that conditionally express ZFP36L1 fused at its N-terminus to green fluorescent 

protein (GFP); we refer to the allele as ROSA26L1 (fig. S10).   There was a significantly reduced 

proportion of S phase cells and increased proportion of G0 cells in ROSA26L1/L1 CD2cre pre-B 
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cells compared to controls (Fig. 3D, E, fig. S11A, B).  Thus enforced expression of ZFP36L1 

suppresses proliferation at the pre-BCR checkpoint.   

CyclinD3, CyclinE2 and their partner kinases were identified amongst candidate ZFP36L1/2 

targets in DCKO late pre-B cells. CyclinD3 has an essential role in pre-BCR mediated 

proliferation (21). Elevated protein expression of CyclinD3 and CyclinE2 was confirmed in 

DCKO pro- and early pre-B cells (Fig. 4A, B, fig. S12A, B) indicating that ZFP36L1 and 

ZFP36L2 limit the induction of CyclinD3 and CyclinE2 to those cells that are transiting pre-

BCR selection.  By contrast, ROSA26L1 CD2cre mice failed to properly induce CyclinD3 or 

CyclinE2 at the proliferative early pre-B cell stage, further reinforcing the role of ZFP36L1 in 

the control of cell cycle at the point of pre-BCR selection (Fig. 4C, D, fig. S12C- E).   

Overexpression of CyclinD3 can inhibit VDJ recombination in pre-B cells through a 

mechanism involving loss of quiescence (22).  Therefore we treated DCKO and control mice 

with the CDK4/6 inhibitor palbociclib, which inhibits activation of the E2F pathway.  

Palbociclib treatment increased V-DJ recombination at the IgH locus of pro/early pre-B cells 

(Fig. 4E, fig. S13A, B).  Consistent with increased recombination and reduced cell division, 

the proportion of pro- and pre-B cells containing excised signal circles was increased following 

palbociclib treatment (fig. S13C, D).  Conversely the frequency of recombination at the IgH 

locus of late pre-B cells was not rescued by palbociclib treatment reflecting the inhibition of 

the cell cycle which prevents the proliferative selection of cells into the late pre-B cell pool 

(fig. S13E).  Igκ recombination was also restored in DCKO late pre-B cells following 

palbociclib treatment (Fig. 4F, fig. S13F).  This indicates that the delays in VDJ recombination 

are caused by loss of quiescence in DCKO pro- and pre-B cells.   

We found that increased Zfp36 family member mRNA expression was typically associated with 

quiescent cell phenotypes (Fig. 4G). Therefore, we generated a ZFP36L1-/- HCT116 human 

colorectal carcinoma cell line and measured expression of CyclinD3 and of CyclinD1- a 

putative ZFP36L1 target that is not expressed in B cells (15, 23).  Expression of both D-type 

cyclins was increased in ZFP36L1-/- HCT116 cells compared to the parental line (Fig. 4H).  

Additionally, genetic experiments have shown loss of Zfp36l2 leads to depletion of 

hematopoietic stem cells (24), loss of Zfp36 is associated with increased muscle satellite 

activation (25). Thus these RBPs likely form part of a general mechanism for the post-

transcriptional regulation of quiescence.  
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As many as 10% of human mRNAs contain AREs (26); this may enable interdependent cellular 

processes to be coordinated by the ZFP36 family. The dynamics of the G0/G1-S phase transition 

are characterized by switching behavior mediated by positive feed-forward regulation in the 

E2F pathway (27), thus this pathway may be particularly sensitive to moderate changes in the 

abundance of its components as measured in DCKO pre-B cells (Fig. 3A). We propose that 

ZFP36L1 and ZFP36L2 suppress the expression of limiting factors for E2F pathway activation 

(16, 28-31) and DNA replication licensing thus providing a robust mechanism for reversibly 

stabilizing the G0/G1 state. This mechanism would contribute to the ability of the progenitor 

cell populations to respond appropriately and dynamically to both mitogenic and anti-

proliferative signals.  

 

Supplementary Materials 

Materials and Methods 

Figs. S1 to S13 

Tables S1 to S16 

References (32–50) 

  



7 

Figure legends 

Figure 1: Conditional knockout of Zfp36l1 and Zfp36l1 in pro-B cells abrogates pre-B cell 

development. (A) Representative scatter plots from flow cytometric analysis of B cell 

development in control and DCKO bone marrow.  Numbers on plots indicate percentage of 

plotted cells in the gate. (B) Quantification of B cell developmental subsets in control (n=5) 

and DCKO (n=5) bone marrow from flow cytometry data shown in (A).  Control and DCKO 

populations were compared by an ANOVA with Sidak’s post-test.  Symbols indicate biological 

replicates, bars represent geometric means.  Data are representative of two independent 

experiments. (C, D) Flow cytometry measuring intracellular Igµ in control (n=6) and DCKO 

(n=5) pro- and early pre-B cells (C), and control (n=7) and DCKO (n=7) late pre-B cells (D).  

Representative histograms of flow cytometry data and summary data are shown.  Symbols on 

charts indicate biological replicates, bars represent means.  Control and DCKO populations 

were compared with a Student’s t-test.  Data are representative of four (C) or two (D) 

independent experiments.  (E) Quantification of cells with zero, one, or two V to DJ 

recombined IgH alleles by DNA FISH within the CD24low pro/early pre-B (enriched for pro-B 

cells, n=3 biological replicates), CD24high pro/early pre-B (enriched for early pre-B cells, n=1 

biological replicate) or late pre-B (n=3 biological replicates) populations of control and DCKO 

mice.  Data are from a single experiment, bars represent mean values, error bars indicate the 

standard deviation. (F) Abundance of recombined Igκ alleles in the late pre-B cells of control 

(n=11) and DCKO (n=11) mice measured by qPCR.  Control and DCKO samples were 

compared using the Student’s t-test.  Data are included from three independent experiments. 

(G, H) Proportion of control (n=5) and DCKO (n=5) pro- and pre-B cells (G), or the Igµ- cells 

appearing in the late pre-B cell gate (H), in early apoptosis measured by staining for activated 

caspases using FITC-VAD-FMK.  Control and DCKO samples were compared by an ANOVA 

with Sidak’s post-test, symbols indicate biological replicates, and bars represent means.  Data 

are representative of two independent experiments.   
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Figure 2: Zfp36l1 and Zfp36l2 control the cell cycle during B cell development. (A) Gene 

set enrichment analysis of transcripts significantly increased in DCKO late pre-B cells.  The 

20 pathways with the lowest false discovery rates (FDR) calculated using the Benjamini-

Hochberg correction are shown.  FDR <10^-6 for all gene sets shown.  Numbers beside bars 

represent the number of overlapping genes between the gene set and the list of transcripts 

increased in DCKO late pre-B cells.  Dataset abbreviations are as follows: REAC (Reactome), 

BIOC (Biocarta), WIKI (Wikipathways), and KEGG (Kegg pathways). (B) Scatter plot 

showing the average reads per kilobase per million (RPKM) in DCKO and control late pre-B 

cells for all genes (grey) and genes in the Reactome Cell Cycle pathway gene set which are 

either significantly increased in the DCKO (red), unchanged (black) or significantly decreased 

in the DCKO (blue). (C) Representative scatter plots from intracellular flow cytometry 

measuring BrdU incorporation following 2.5 hours labelling in vivo in control and DCKO pro 

and pre-B cells. (D) Proportion of control (n=5) and DCKO (n=5) pro and pre-B cells 

incorporating BrdU measured by flow cytometry as shown in (C).  Data are representative of 

two independent experiments. (E) Representative scatter plots from intracellular flow 

cytometry measuring p27 in control and DCKO pro- and pre-B cells. (F) Proportion of control 

(n=6) and DCKO (n=5) pro and pre-B cells in G0 (expressing p27) measured by flow cytometry 

as shown in (E).  Data are representative of two independent experiments. Numbers on flow 

cytometry dot plots indicate the percent of plotted cells in the gate.  Flow cytometry data for 

control and DCKO samples were compared by an ANOVA with Sidak’s post-test, symbols 

indicate biological replicates, and bars represent means.   
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Figure 3: Cell cycle mRNAs are direct targets of ZFP36L1 and ZFP36L2. The abundance 

of mRNAs in DCKO and control late pre-B cells was measured by RNA sequencing and was 

analyzed in DESeq.  ZFP36L1 target mRNAs were identified by iCLIP in mitogen stimulated 

lymph node B cells. (A) The moderated log2 fold change in abundance of RNA in DCKO 

compared to control late pre-B cells grouped according to the number of ZFP36L1 iCLIP reads 

within significant peaks (FDR<5%) in the 3’UTR of each gene.  n indicates the number of 

genes in each group.  Boxes show median and interquartile range, whiskers indicate the 5th and 

95th percentiles.  Groups of mRNAs were compared by ANOVA with Tukey’s post-test. 

(B) Venn diagram of cell cycle mRNAs showing the overlap between mRNAs identified as 

ZFP36L1 targets through iCLIP, mRNAs with WWAUUUAWW motifs in their 3’UTRs, and 

mRNAs significantly increased in the DCKO late pre-B cells compared to control late pre-B 

cells as determined by a negative binomial test with a Benjamini-Hochberg correction for 

multiple testing in DESeq.  The moderated log2 fold changes in mRNA abundance in DCKO 

late pre-B cells for selected groups of mRNAs are shown. (C) Sequence conservation between 

H. sapiens, M. musculus, L. Africana, P. vampyrus, C. lupus familaris and B. Taurus CDS, 

3’UTRs and WWAUUUAWW motifs for selected mRNAs encoding cell cycle regulators. (D) 

Proportion of pro- and pre-B cells from ROSA26L1/L1 (n=7) and ROSA26L1/L1 CD2cre (n=10) 

mice incorporating BrdU, determined by flow cytometry following 2.5 hours labelling in vivo.  

Flow cytometry scatter plots shown in fig. S11A. Data are combined from two independent 

experiments. (D) Proportion of cells expressing p27 in ROSA26L1/L1 (n=7) and ROSA26L1/L1 

CD2cre (n=6) pro- and pre-B cells.  Flow cytometry scatter plots are shown in fig. S11B. Data 

are from a single experiment.  Flow cytometry data for control and DCKO samples were 

compared by an ANOVA with Sidak’s post-test, symbols indicate biological replicates, and 

bars represent means.   

  



10 

Figure 4: Cyclin expression is repressed by ZFP36L1 and ZFP36L2 in B cell development 

and this mechanism is required for efficient light chain recombination. (A)  MFI (median 

fluorescence intensity) of flow cytometry stains for CyclinD3 in control (n=4) and DCKO 

(n=5) pro- and pre-B cells.  Scatter plots of flow cytometry are shown in fig. S12A.  Data are 

representative of two independent experiments. (B)  MFI of flow cytometry stains for CyclinE2 

in control (n=5) and DCKO (n=4) pro- and pre-B cells.  Scatter plots of flow cytometry are 

shown in fig. S12B.  Data are representative of two independent experiments. (C) MFI of flow 

cytometry stains for CyclinD3 in ROSA26L1/L1 control (n=5) and Cd2cre (n=5) pro- and pre-B 

cells.  Scatter plots of flow cytometry are shown in fig. S12C.  Data are from a single 

experiment. (D) MFI of flow cytometry stains for CyclinE2 in ROSA26L1/L1 control (n=5) and 

Cd2cre (n=5) pro- and pre-B cells.  Scatter plots of flow cytometry are shown in fig. S12D.  

Data are from a single experiment. Flow cytometry data (A-D) were compared using an 

ANOVA with Tukey’s post-test, symbols indicate biological replicates, and bars represent 

means. (E) Quantification of pro/early pre-B cells with zero, one, or two V to DJ recombined 

IgH alleles by DNA FISH in control and DCKO mice following treatment with vehicle control 

or 150mg/kg palbociclib daily for two days.  Data are from a single experiment, n=3 for each 

group, bars represent mean values, error bars indicate the standard deviation. (F) Abundance 

of recombined Igκ alleles, measured by qPCR, in the late pre-B cells of control and DCKO 

mice treated with vehicle control or 150mg/kg palbociclib daily for two days.  Control and 

DCKO samples were compared using an ANOVA with Tukey’s post test.  Data are from a 

single experiment, symbols represent biological replicates, bars indicate means. (G) The fold 

change in expression of Zfp36 family members in published datasets comparing resting 

(quiescent) and stimulated dividing (non-quiescent) follicular B cells, light zone (quiescent) 

and dark zone (non-quiescent) germinal center-B cells (n=2), naïve (quiescent) and effector 

(non-quiescent) CD8+ T cells, adult (quiescent) and fetal (non-quiescent) hematopoietic stem 

cells (HSCs) (n=2), p27high (quiescent) and p27low (non-quiescent) fibroblasts (n=4), and resting 

(quiescent) and activated (non-quiescent) muscle satellite cells (n=3).  * indicates a p value less 

than 0.05.  Solid lines separate independent datasets, dashed lines separate biological replicates. 

(H) Expression of ZFP36L1, CyclinD3 and CyclinD1 proteins in parental and ZFP36L1-/- 

HCT116 colon carcinoma cells following serum starvation and restimulation; C= continuous 

culture, SF= serum free for 24 hours.  Data are representative of three experiments.  
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Materials and Methods 

Mice 

All mice were housed in specific pathogen free IVC within the Babraham Institute Biological 

Support Unit. Breeding and experiments were performed using procedures approved after local 

ethical review and under the UK Animal (Scientific procedures) Act 1986.   

Zfp36l1fl mice (Zfp36l1tm1.1Tnr) and Zfp36l2fl mice (Zfp36l2tm1.1Tnr) have been described 

previously (11).  ROSA26L1 mice were generated using standard methods following targeting 

of the ROSA26 locus in Bruce4 (C57BL/6 origin) mouse embryonic stem cells with a targeting 

vector containing the cDNA encoding an N-terminal fusion of eGFP to human ZFP36L1.  The 

parental targeting vector was generated by Klaus Rajewsky’s laboratory (32).  Two 

independently targeted ES cell lines were used to generate mice.  The transgenes used for cell 

type specific Cre expression were CD2cre (Tg(CD2-cre)4Kio) (33) provided by Dimitris 

Koiussis ,and Mb1cre (CD79atm1(cre)Reth) (34)  provided by Michael Reth.   IgHtg mice carried 

the Ightm1Rbr allele (35) and were provided by Robert Brink. The BCL2 transgenic mice 

(C57BL/6-Tg(BCL2)36Wehi/J) were generated by S. Cory (36). Mouse strains were 

maintained on a C57BL/6 background. 

Mice were genotyped using primers described in table S9. 

Palbociclib administration 

Palbociclib (Selleck Chemicals) was dissolved in 50mM sodium lactate (Sigma) and 

administered to mice by oral gavage daily for two or four days at a dose of 150mg/kg.  Mice 

were culled and analyzed 1 day after the final administration of palbociclib.   

NOTCH1 blocking antibody administration 

Notch1-blocking antibody was administered as previously described (11) by intraperitoneal 

injection twice weekly for 3 weeks at a dose of 5 mg/kg. 

Flow cytometry 

Antibodies used are listed in tables S10, S11 and S12.  The secondary antibody against mouse 

IgG2b was labelled using an Alexa Fluor 647 Antibody Labeling Kit from Molecular Probes 

(Life Technologies) according to the manufacturer’s instructions.  Bone marrow cells were 

flushed from the femurs and tibias and a cell suspension generated by pipetting and passing 

through a 40m filter.  Phosphate buffered saline (PBS) + 0.5% fetal calf serum (FCS) was 

used as FACS buffer. Cells were counted using a CASY counter (Schärfe systems/Roche). 

For surface stains cells were incubated with Fc block (clone 2.4G2 from BioXcell) and 

antibodies in FACS buffer for 40 mins at 4°C and washed in FACS buffer.  Where secondary 

antibodies or streptavidin were used these steps were repeated.  Dead cell exclusion was 

achieved by suspending cells in 0.1µg/ml DAPI or using eFluor 780 fixable viability dye 

(eBioscience).   



To stain for intracellular proteins, cells were first stained for surface markers then fixed in 

Becton Dickinson (BD) cytofix/cytoperm on ice for 30 mins, washed in perm/wash buffer (BD) 

and frozen at -80°C in 90% FCS 10% DMSO.  After thawing, staining and washing of the cells 

was carried out using perm/wash buffer.  Incubations with primary antibodies were carried out 

for one hour at room temperature and incubations with secondary antibodies, where necessary, 

were carried out for half an hour at 4°C.  Where appropriate, DAPI was used to measure DNA 

content at a concentration of 1µg/ml. 

For cell cycle analysis using BrdU mice were injected intraperitoneally with 1mg of BrdU 

(Sigma) dissolved in PBS then culled 2.5 hours later.  The cells were stained for surface 

markers then fixed and stained for BrdU using a FITC or APC BrdU flow kit from BD 

according to the manufacturer’s instructions.   

Cells were stained for activated caspases using the CaspGLOW pan caspases kit (Biovision) 

according to the manufacturer’s instructions.  Incubation with FITC-VAD-FMK was carried 

out for one hour at 37°C in DMEM media (Life Technologies) supplemented with 10% FCS 

and 50M -mercaptoethanol (Sigma), and cells were subsequently stained with antibodies as 

described above.   

Data was collected on an LSRII or Fortessa (BD) flow cytometer and analyzed using Flowjo 

software (Treestar).   

Cell sorting was undertaken using a FACS Aria or Influx FACS sorter (BD).  Bone marrow 

was depleted of red blood cells, macrophages and NK cells using MACS cell separation 

(Miltenyi).  Cells were incubated with biotinylated antibodies against TER-119, NK1.1 and 

CD11b for 15 mins at 4°C in FACS buffer, washed, then incubated in anti-biotin MACS 

magnetic beads (Miltenyi) for 20 mins at 4°C.  Cells were washed, then loaded onto MACS 

LS columns, and the negative fraction collected. Late pre-B cells were sorted as CD19+, IgM-, 

CD43-, CD25+ cells, pro/early pre-B cells were sorted as CD19+, IgM-, CD43+, CD25- cells. 

Gating strategies 

For cell enumeration and cell sorting, based on surface stains pro/early pre-B cells were gated 

as CD19+, IgM-, IgD-, CD43+ cells; late pre-B cells as CD19+, IgM-, IgD-, CD43-, CD25+; 

immature B cells as CD19+, IgM+, IgD-; and mature B cells as CD19+, IgD+. The only exception 

to this is in figure S2B where pre-B cells were defined as B220+, IgM-, CD25+; immature B 

cells were defined as B220low, IgM+; and mature B cells were defined as B220high, IgM+.  

When using intracellular Igµ to differentiate pro and early pre-B cells in stains measuring 

BrdU, p27, active caspase, cyclinD3 or cyclinE2; pro-B cells were defined as CD19+, surface 

IgM-, CD43+, intracellular Igµ-; early pre-B cells were defined as CD19+, surface IgM-, CD43+, 

intracellular Igµ+; and late pre-B cells were defined as CD19+, surface IgM-, CD43-, 

intracellular Igµ+. 

RNA extraction and cDNA conversion 

Cells were pelleted by centrifugation and lysed in Trizol reagent (Invitrogen), snap frozen on 

dry ice and stored overnight at -80°C.  RNA was extracted from the lysate by phenol-

chloroform extraction.  The aqueous phase was collected and RNA was precipitated using 



isopropanol with 20µg of glycogen (Ambion) then washed twice with ethanol.  RNA was air 

dried then resuspended in DEPC treated water and the RNA concentration was determined by 

NanoDrop.  RNA samples were stored at -80°C. 

0.25µg of RNA was converted to cDNA.  Contaminating genomic DNA was removed using  

RNAse free DNAse (Ambion), in Superscript first strand buffer (Invitrogen), with 0.01M DTT 

and RNasin (Promega), incubated at 37°C for 15 mins.  DNAse was heat inactivated at 70°C 

for 10 mins.  Then cDNA was synthesized by using Superscript II reverse transcriptase 

(Invitrogen), with either 2.5µM random hexamers (Roche) (for evaluation of Zfp36 family 

expression) or 10ng/µl oligo dT (for evaluation of cell cycle regulator expression) for priming 

and 0.5µM dNTPS (Bioline).  Reverse transcription was carried out by incubating at room 

temperature for 10 mins, 42°C for 40 mins then 70°C for 15 mins cDNA was diluted in 150µl 

DEPC treated water and stored at -20°C. 

Genomic DNA isolation 

Genomic DNA was isolated using the Gentra Puregene DNA isolation kit (Qiagen), according 

to the manufacturer’s instructions.  Following precipitation, samples were resuspended in Tris-

EDTA buffer and stored at 4°C. 

DNA-FISH 

DNA FISH was performed as previously described (37) using Igh constant region BAC RP24-

258E20, labelled with Alexa fluor 488, and a set of 7 plasmids containing non-repetitive parts 

of the VH-DH intergenic region (inserts sizes 1-3kb, ~15kb in total, sequences available on 

request), labelled with Alexa fluor 555. Signals were counted manually on an Olympus BX61 

epifluorescence microscope system. 

Mature B cell isolation and stimulation 

B cells were isolated from mouse lymph nodes.  Cells were incubated with biotinylated 

antibodies against CD5, CD43, CD11b and Ter119 for 30 mins on ice then washed and 

incubated in streptavidin-Dynabeads (Life Technologies) in PBS + 5% BSA for 15 mins on 

ice.  Labelled cells were removed using a Dynabeads magnet for 5 mins at 4°C.  The incubation 

with Dynabeads and magnetic separation was then repeated.  The B cells were then plated at 2 

million per ml in RPMI-1640 (Sigma) + 10% FCS + GlutaMAX (Gibco) + 100 U/ml 

Penicillin/Streptomycin (Life Technologies) + 50M -mercaptoethanol (Sigma) + 1mM Na-

Pyruvate (Life Technologies) + 10g/ml LPS (Sigma) + 10ng/ml IL4 (PeproTech) + 5ng/ml 

IL5 (Sigma) for 48 hours at 37°C 5% CO2. 

Preparation of protein lysates for Individual-nucleotide resolution Cross-Linking and 

ImmunoPrecipitation (iCLIP). 

After washing with ice-cold PBS, intact cells were irradiated with UV-light (300 mJ/cm2, 

Stratalinker 2400) then lysed in lysis buffer (50mM Tris HCl, pH 8.0, 100mM NaCl, 1% NP-

40, 0.5% deoxycholate, 0.1% SDS, 1:200 protease inhibitor cocktail (Sigma).  The lysates were 



sonicated then protein was quantitated using a BCA assay kit (Thermo Scientific Pierce) by 

comparison to a serial dilution of albumin.   

Immunoprecipitation and resolution of ZFP36L1-RNA complexes 

Rabbit anti-ZFP36L1 antibody (Brf1/2 from Cell Signaling) was conjugated to Protein A-

Dynabeads (Invitrogen) to make Brf1/2-Dynabeads. iCLIP experiments were performed 

essentially as described previously (38).   For each experiment 2mg of B cell protein 

supernatant was cleared by centrifugation then digested with TURBO DNAse (Ambion) and 

RNase I (Ambion) for 3 mins at 37°C.  The lysates were then treated with SUPERase-In 

(Ambion) to stop the RNAse digestion. 

Immunoprecipitation was performed using Brf1/2-Dynabeads for 4.5 hours at 4°C.  The beads 

were then washed in high stringency buffer (50 mM Tris-HCl, pH 7.4, 1M NaCl, 1 mM EDTA, 

1% NP-40, 0.6% SDS, 0.3% Sodium deoxycholate), then in PNK wash (20 mM Tris-HCl, pH 

7.4, 10 mM MgCl2, 0.2% Tween-20).  RNA dephosphorylation was carried out in PNK buffer 

(NEB) with RNAsin (NEB) and PNK (NEB) at 37°C for 20 minutes. Beads were then washed 

in low stringency buffer (50 mM Tris-HCl, pH 7.4, 1M NaCl, 1mM EDTA, 1% NP-40, 0.2% 

SDS, 0.5% Sodium deoxycholate).  All subsequent steps were done exactly as described in 

(38). cDNA libraries from four independent experiments were prepared and sequenced using 

Illumina’s HiSeq2000 (100 bp single end sequencing).  RCLIP primers used for RNA reverse 

transcription included a barcode at the 5’end with three known bases and four random 

nucleotides (table S13).  

Bioinformatics analysis of iCLIP libraries. 

iCLIP analysis was performed as previously described (38).  Briefly, sample demultiplexing 

was performed by identification of the 3 known bases of the 7 bases barcode introduced in the 

5’ end of the read by the RCLIP primer.  The remaining four random bases were used to remove 

PCR duplicate reads.  Reads were trimmed to remove any adaptor sequence and barcodes 

before mapping reads to genome mm10 using Bowtie.  After read mapping, the single-

nucleotide at position -1 was annotated as unique ZFP36L1 crosslink site.  Identification of 

highly significant ZFP36L1 binding sites was performed using iCount to assign a FDR to each 

crosslink site as previously described (39) with the following considerations.  (i) The height 

associated to a unique ZFP36L1 crosslink site was calculated as the sum number of cDNA 

counts from four independent experiments.  (ii) Windows were created by extending crosslink 

sites 15 nucleotides to both directions.  (iii) 100 permutations were allowed to calculate the 

background frequency.  Only ZFP36L1 crosslink sites with a FDR < 0.05 were further 

considered in our analysis.  Cross link sites identified were analysed for KMER content in 

iCOUNT.  All occurrences of an 8-nucleotide kmer in the windows -30nt to -10nt and 10nt to 

30nt relative to each cross-link are counted. Random reference data was generated 100 times 

by random shuffling of iCLIP cross-link positions within corresponding genome segments 

(within the same genes).   



RNAseq 

RNAseq libraries were prepared from 0.1 µg of RNA from sorted control and DCKO late pre-

B cells using TruSeq RNA sample preparation kit v2 modified to be strand specific using the 

dUTP method.  Libraries were sequenced by an Illumina genome analyzer II measuring 54bp 

single-end reads.  Over 30 million reads were measured from each sample.  The reads were 

trimmed to remove adapter sequences using Trim Galore then mapped using Tophat (version 

1.1.4) to the NCBI m37 mouse assembly (April 2007, strain C57BL/6J); reads with an identical 

sequence to more than one genomic locus were not mapped.  Quality control analysis was 

carried out with Fast QC.   

Differential expression of transcripts 

Read counts for each gene were generated in SeqMonk: transcripts from the same gene were 

collapsed into a single transcript containing all exons, so total reads were counted without 

considering alternative splice forms.  Since the libraries were strand-specific only reads on the 

opposing strand were counted.  Differences in the abundance of transcripts between DCKO 

and control late pre-B cells were calculated in the R/Bioconductor program DESeq (version 

1.12.1) (40) which fits read count data to a negative binomial distribution and uses a shrinkage 

estimator to estimate the distribution's variance.  Adjusted P values for differential expression 

were calculated in DESeq using a Benjamini-Hochberg correction: genes with an adjusted p-

value of less than 5% were considered significant. 

Gene set enrichment analysis 

Differentially expressed mouse transcripts identified using DESEQ, or iCLIP targets with at 

least two reads in the 3’UTR, were analyzed for gene set enrichment using Toppfun using a 

false discovery rate cut off of 0.05 (41).   Pathway analysis included gene sets from Biocarta, 

Reactome, Wikipathways and Kegg databases.  GO term analysis used the GO biological 

pathways database.  Log2 transformed normalized mean gene counts divided by gene length 

(RPKM) for genes in the control and DCKO RNAseq datasets were plotted in R with indicated 

gene lists highlighted. 

Expression of transcripts with RBP binding sites 

To compare the expression of mRNAs depending on the presence of ZFP36L1 binding sites in 

their 3’UTRs the moderated log2 fold change between DCKO and control samples for each 

gene was calculated in DESeq from moderated expression values from the DESeq variance 

Stabilizing Transformation function.  The 50% of genes with the greatest overall read counts 

between all samples were selected for analysis and the Zfp36l1 and Zfp36l2 genes were 

removed from the analysis.  The genes were then grouped according to the number of ZFP36L1 

iCLIP reads within significant peaks (FDR<5%) in the 3’UTR of each gene.  Violin plots were 

drawn using ggplot2 in R, and the groups were compared by an ANOVA with Tukey’s post-

test in R. 

Comparisons of the expression of mRNAs depending on the presence of AREs in their 3’UTRs 

was performed as per the comparison with ZFP36L1 binding sites except the number of 



WWAUUUAWW motifs in each 3’UTR was used to group the genes.  3’UTR sequences were 

obtained from Ensembl through biomaRt (biomaRt version 2.16.0, Ensembl release 77) and 

the longest 3’UTR from each gene was considered. The number of WWAUUUAWW motifs 

in each 3’UTR were counted using BioStrings in R. 

Comparisons of the expression of mRNAs depending on the presence of Zfp36 binding sites 

in the 3’UTRs of their human homologue was performed as per the comparison with ZFP36L1 

binding sites except the number of Zfp36 binding sites determined by PAR-CLIP in human 

HEK293 cells was considered (15).  A cut-off of at least four PAR-CLIP reads with C to T 

transitions within the 3’UTR was used to distinguish mRNAs with and without binding sites 

and genes were grouped according to the number of binding sites identified and were matched 

to their mouse homologue.   

Regulation of cell cycle transcripts by ZFP36 family RBP 

A gene list containing 90 cell cycle regulator mRNAs was used to prepare a Venn diagram 

showing the overlap between the presence of ZFP36L1 binding sites (defined by at least two 

iCLIP reads in the mRNA’s 3’UTR), the presence of WWAUUUAWW motifs, and significant 

increases of mRNA in DCKO late pre-B cells.  The data used in this comparison is shown in 

table S8.  The Venn diagram was drawn using the venneuler package in R. 

For the Venn diagram of cell cycle mRNAs showing the overlap between significant increases 

in mRNA in DCKO late pre-B cells and presence of Zfp36 binding sites in their human 

homologues identified by PAR-CLIP in HEK-293 cells a cut-off of at least four PAR-CLIP 

reads with C to T transitions within the 3’UTR was used to distinguish mRNAs with and 

without binding sites. 

Analysis of sequence conservation in Zfp36 binding sites and AREs 

Coding sequence (CDS) or 3’UTR sequences from the species indicated were aligned using 

Clustal Omega (42).  Each nucleotide on the alignment was considered conserved if it matched 

across all six species.  AU-rich elements were identified as any element matching the sequence 

WWATTTAWW in the mouse 3’UTR, then where nucleotides identified by iCLIP were 

outside of these sequences a seven nucleotide motif surrounding the identified nucleotide was 

considered, where these motifs overlapped they considered as a single longer motif.  

qPCR 

For TaqMan assays Platinum taq supermix with UDG (Invitrogen) was used with TaqMan 

probes and primers (Life Technologies) indicated in tables S14 and S15.  For SybrGreen assays 

Platinum Taq SybrGreen supermix (Invitrogen) was used primers are described in table S16.  

The abundance of Zfp36l1 exon 2 and Zfp36l2 exon 2 in genomic DNA was calculated using 

the 2^-dCT method with Tbp and Zfp36l2 exon1 used as controls respectively.  This was possible 

because the efficiency of the control assays was equal to that of the test assays. 

Igκ recombination was measured as previously described (43). Kappa recombination products 

were normalized to total DNA using a product covering iEκ using the 2^-dCT method. 



The RT-qPCR assays measuring transcript abundance were normalized to multiple controls.  

The relative abundance of each mRNA was calculated by referring to a standard dilution of 

cDNA.  

 

Plasmids 

PCDNA ZFP36L1 and ZFP36L1-tandem zinc finger mutant expression constructs were 

generated as described previously (11).  Constructs containing CylinE2 3’UTR and mutant 

dARE CyclinE2 3’UTR flanked by gateway AttB-sites were generated by plasmid synthesis 

(Life Technologies).  These were cloned into pDonor 221 (Life technologies) using BP clonase 

(Life technologies).  The 3’UTR sequences were then cloned downstream of the firefly 

luciferase CDS in a gateway- compatible psi check vector (kindly provided by Lars Dolken) 

(44). 

 

Luciferase assays to demonstrate the Ccne2 ARE is functional. 

HELA cells were grown in DMEM (Life technologies), supplemented with 10% FCS (Life 

technologies), and penicillin/streptomycin (Life technologies).  Psi-check and ZFP36L1-

expression vectors were transfected into HELA cells using X-treme gene HP (Roche).  Cells 

were harvested 48 hours after transfection, and renilla and firefly luciferase activities were 

assayed using the dual-luciferase reporter assay system (Promega) with a MicroLumatPlus 

LB96V luminometer (Berthold Technologies). 

 

Analysis of Zfp36 family member expression in quiescent and non-quiescent cell populations 

Publically available data for muscle satellite cells (GSE47177, Rodgers et al 2014 Nature (45)); 

hematopoietic stem cells (GSE1559, Venezia et al 2004 PLOS Biol (46)); NIH3T3 cells in G0 

and G1 phases (GSE46511, Oki et al 2014 Nature (13)); germinal center B cells photoactivated 

in the light zone or dark zone (GSE23925, Victora et al 2010 Cell (47)); undivided resting and 

activated B cells (GSE60927, Shi et al 2015 Nat Immunol (48)); and resting and undivided OT-

I CD8 T cells from mice infected with OVA-expressing Listeria monocytogenes (Lm-OVA) 

(GSE15907, Best et al 2013 Nat Immunol (49)) were downloaded from GEO. RNA-seq data 

was aligned to mouse genome (GRCm38) using TopHat and read counts were generated using 

HTSeq count. DESeq2 was used to calculate log2FC. Normalised signal values from 

microarray studies were log2 transformed and signal log ratio between conditions were 

calculated. Log2FC for each comparison were visualized using a heatmap in R. 

 

Generation of ZFP36L1-/- HCT116 cells 

Guide RNAs to human ZFP36L1 were designed using Horizon Technology’s Guidebook and 

cloned into their Cas9-expressing plasmids.  HCT116 cells were transfected with the guide 

RNA-containing plasmids by electroporation using a nucleofector machine (Amaxa).  

Transfection was monitored by GFP expression and flow cytometry used to sort single GFP-

positive cells into 96 well plates.  Clones of interest were expanded and assessed for the 

presence or absence of ZFP36L1 by Western blot. Guide RNA 



AACTATAGTGCTCCCAGTGC was successful in ablating ZFP36L1 expression in multiple 

independent clones. 

Western blotting 

Parental or ZFP36L1-/- HCT116 cells were seeded into 10cm dishes.  Cells (60% confluent) 

were serum starved for 24 hours before re-stimulation with 10% FBS for the indicated times.  

Cells were lysed in ice cold TG lysis buffer (50) assayed for protein content, separated by SDS 

PAGE and transferred to PVDF membranes.  The membranes were then blocked with 5% non-

fat milk in TBST before overnight incubation at 4oC with the indicated antibodies (table S10).  

Blots were then washed in TBST, incubated with HRP-conjugated secondary antibodies and 

results visualised with ECL. 

Statistics 

Except for data generated by high throughput sequencing, where statistical tests are described 

elsewhere, all statistical analyses were performed using prism software (GraphPad).  The test 

used and sample sizes are indicated in the figure legends.  When data were displayed on a 

logarithmic scale, log-transformed data were used in comparisons.  
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Fig. S1: Expression of Zfp36 family members through B cell development. 
(A) Schematic depicting B cell developmental stages in the mouse bone marrow and indicating
the markers used to identify cells at different stages. (B) RT-qPCR on sorted cells measuring 
the abundance of Zfp36 family mRNAs.  Data is normalized to four reference genes: Tbp, Hprt,
Actb and B2m.  Four biological replicates are shown, data are from a single experiment.
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Fig. S2: Double conditional knockout of Zfp36l1 and Zfp36l2 abrogates early B cell 
development in a NOTCH1 independent manner. 
(A) Flow cytometric quantification of bone marrow B cell developmental subsets in mice with 
single or double conditional knockout of Zfp36l1 and Zfp36l2 showing that knockout of 
Zfp36l1 or Zfp36l2 alone does not affect the earliest stages of B cell development, but knockout 
of both genes leads to reduced pre-B cell numbers.  Zfp36l1fl/fl (n=3), Zfp36l1fl/fl CD2cre (n=5), 
Zfp36l2fl/fl (n=3), Zfp36l2fl/fl CD2cre (n=5), Zfp36l1fl/fl Zfp36l2fl/fl (n=10), and Zfp36l1fl/fl 
Zfp36l2fl/fl CD2cre (n=9) mice are shown.  Data on Zfp36l1fl/fl and Zfp36l2fl/fl mice are 
representative of single experiments; data from Zfp36l1fl/fl Zfp36l2fl/fl mice are from two 
independent experiments. CD2cre and control populations were compared by an ANOVA with 
Sidak’s post-test.  Symbols indicate biological replicates, bars represent geometric means. (B) 
Zfp36l1fl/fl Zfp36l2fl/fl mice were injected intraperitoneally with 5ug/g of NOTCH1 blocking 
antibody twice weekly for three weeks, then the numbers of cells at B cell developmental stages 
quantified. This treatment caused the regression of thymic tumors in Zfp36l1fl/fl Zfp36l2fl/fl 

CD2cre mice (11), but did not rescue B cell development. Each symbol represents a biological 
replicate and lines represent the median value for each group.  Results were analysed by a 
Kruskal-Wallis test with Dunn’s post test for pairwise comparisons. (C) Abundance of NOTCH 
pathway mRNAs in control (n=3) and DCKO (Zfp36l1fl/fl Zfp36l2fl/fl Mb1cre/+, n=2) late pre-B 
cells measured by RNAseq does not suggest any increase in the activity of this pathway in 
DCKOs.  Adjusted p-values are shown. 
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Fig. S3: Zfp36l1fl and Zfp36l2fl alleles are efficiently recombined by Mb1cre. 
(A, B) qPCR on DNA isolated from sorted control (n=3) and DCKO (n=5) pro- and pre-B cells 
to measure the relative abundance of an amplicon in the floxed region of Zfp36l1 (A) and 
Zfp36l2 (B).  Data are from a single experiment.  Symbols indicate biological replicates, bars 
represent the geometric means. (C) Number of RNAseq reads aligning to the CDS in exon 2 of 
Zfp36l1 and Zfp36l2 in libraries from sorted control (average of 3 replicates) and DCKO 
(average of two replicates) late pre-B cells.  N.D. (not detected) indicates that no reads aligned 
to these regions in libraries from the DCKO late pre-B cells. 
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Fig. S4: DNA FISH to investigate recombination of the IgH loci. 
(A) Schematic of probes used to detect regions of DNA corresponding to the CH region and 
VH-DH intergenic region of the IgH locus. (B) Representative FISH images showing cells with
zero, one or two V to DJ recombined IgH alleles.
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These data show that Igμ expression is restored by the SWHEL IgH transgene at the early 
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Data are from a single experiment. (C) Flow cytometric quantification of B cell 
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test, symbols indicate biological replicates, bars represent means in (B) and geometric means 
in (C). 



A
Pro-B cells 
(+early pre-B) Immature B cellsLate pre-B cells Mature B cells

Human Bcl2

103

104

105

106

107

108

C
el

ls
in

tw
o

fe
m

ur
s

an
d

tw
o

tib
ia

s

p=0.7558

p<0.0001

p=0.0954

p=0.0095

103

104

105

106

107

108

C
el

ls
in

tw
o

fe
m

ur
s

an
d

tw
o

tib
ia

s

p=0.2726

p<0.0001

p=0.0038

p<0.0001

103

104

105

106

107

108

C
el

ls
in

tw
o

fe
m

ur
s

an
d

tw
o

tib
ia

s

p=0.6164

p<0.0001

p=0.9080

p<0.0001

Control

DCKO

Control BCL2TG

DCKO BCL2TG

MatureLate pre Immature

10
0

10
1

10
2

10
3

10
4

0

100

200

300

400

10
0

10
1

10
2

10
3

10
4

0

200

400

600

10
0

10
1

10
2

10
3

10
4

0

100

200

300

400

10
0

10
1

10
2

10
3

10
4

0

200

400

600

800 Control

Control BCL2TG

DCKO BCL2TG

B

Fr
eq

ue
nc

y

0

5

10

15

20

25

%
 F

IT
C

-V
AD

-F
M

K 
po

si
tiv

e

p=0.9973

p=0.0628

p=0.6826

p=0.0033 Control

DCKO

Control BCL2TG

DCKO BCL2TG

Late preC

Trp5
3

Pmaip
1

Bbc
3

Bax
Bak

1

Cdk
n1

a

Gad
d4

5a

Gad
d4

5g

Gad
d4

5b

25

210

215

Con
DCKO0.5655

0.9111
0.9027

0.3796
1.0000

<0.0001

0.3796

0.0001
0.6760

D

Fig. S6: Apoptosis of DCKO late pre-B cells cannot be rescued by expression of BCL2. 
(A) Representative FACS plots showing staining for human BCL2 in control (n=1), control 
BCL2TG (n=3), and DCKO BCL2TG (n=4) B cell progenitor populations. (B) Flow cytometric 
quantification of B cell developmental subsets in the bone marrow of control (n=3), control BCL2TG 
(n=7), DCKO (n=6), and DCKO BCL2TG (n=4) mice demonstrating no rescue of B cell development 
by the BCL2 transgene. Symbols indicate biological replicates, bars represent geometric means. (C) 
Proportion of control (n=3), control BCL2TG (n=7), DCKO (n=6), and DCKO BCL2TG (n=4) 
late pre-B cells in early apoptosis demonstrating the BCL2 transgene does not rescue apoptosis 
in DCKO late pre-B cells. Symbols indicate biological replicates, bars represent means, 
populations were compared by an ANOVA with Sidak’s post-test. (D) Abundance of mRNAs 
that are involved in the P53 pathway in control (n=3) and DCKO (n=2) late pre-B cells 
measured by RNAseq demonstrating that we cannot detect a transcriptional signature indicative 
of increased P53 activity in the DCKO late pre-B cells.  Notably Pmaip, Bbc3, Bax and Bak1 
which directly induce apoptosis were unchanged in DCKOs. Adjusted p-values are shown. 
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Fig. S7:  Expression of mRNAs and proteins that regulate the cell cycle downstream of 
the pre-BCR in control and DCKO late pre-B cells. 
Here we demonstrate the transcription factors induced downstream of the pre-BCR that drive 
quiescence and VJ recombination in late pre-B cells are activated in the DCKO late pre-B cells 
and that these cells express the recombination machinery and undergo germline transcription 
of the Igκ locus. (A) Abundance of mRNAs in control (n=3) and DCKO (n=2) late pre-B cells 
measured by RNAseq.  Samples were normalized according to the library size and compared 
using a negative binomial test with a Benjamini-Hochberg correction for multiple testing using 
DESeq.  Adjusted p-values are shown. (B) Non-coding Igκ transcription upstream of the Igκ J 
segments measured by RNAseq in control (n=3) and DCKO (n=2) late pre-B cells expressed 
as reads per million. (C-F) Flow cytometric analysis of IRF4 (C), IRF8 (D), Ikaros (E) and 
Aiolos (F) expression in control (n=6 or 7) and DCKO (n=6 or 7) late pre-B cells.  
Representative histograms and summary data are shown. Median fluorescence intensities 
(MFIs) were normalized to the isotype control by subtracting the isotype MFI from the specific 
antibody MFI.  Samples were compared by Student’s t-tests.  Symbols indicate biological 
replicates, bars represent means. 
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Fig. S8: Analysis of RNAseq data to assess the differences in expression of ARE and Zfp36 
binding site-containing transcripts. 
(A, B) Moderated log2 fold change in the abundance of mRNAs in DCKO compared to control 
late pre-B cells in mRNAs grouped by the number of AREs, defined as WWAUUUAWW 
(where W is A or U), in their 3’UTRs (A), or by the number of Zfp36 binding sites in the 
3’UTR of their human homologue determined from published PAR-CLIP data (15) (B). n 
indicates the number of genes in each group.  Boxes show median and interquartile range, 
whiskers indicate the 5th and 95th percentiles.  Groups of mRNAs were compared by an 
ANOVA with Tukey’s post-test. (C) Venn diagram of cell cycle mRNAs indicating overlap 
between mRNAs whose human homologues were identified as Zfp36 targets by PAR-CLIP, 
mRNAs with WWAUUUAWW motifs in their 3’UTRs, and mRNAs significantly increased 
in the DCKO late pre-B cells compared to control late pre-B cells as determined by a negative 
binomial test with a Benjamini-Hochberg correction for multiple testing in DESeq.  
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Fig. S9: An ARE identified in the Ccne2 3’UTR is responsive to ZFP36L1 
(A) Section of the Ccne2 3’UTR showing alignments between H. sapiens, M. musculus, L. 
Africana, P. vampyrus, C. lupus familaris and B. Taurus sequences.  Nucleotides identified by 
ZFP36L1 iCLIP and the core conserved ARE in the region are shown as well as the section 
removed in dARE mutant used for luciferase assays. (B) Ratio of firefly to renilla luciferase 
signal in lysates from HELA cells transfected with constructs with the full Ccne2 3’UTR or 
Ccne2 3’UTR with the ARE shown in (A) deleted, co-transfected with either an empty PCDNA 
plasmid, or PCDNA plasmid expressing wild-type ZFP36L1 or ZFP36L1 with mutations on 
both the RNA-binding zinc fingers (TZFM).  Ratios were normalized to an empty luciferase 
construct and expressed as a percentage of the signal obtained with the Ccne2 UTR co-
transfected with empty PCDNA. 
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Fig. S10: Generation of the ROSA26L1 transgene. 
(A) Targeting strategy of ROSA26L1 allele. (B) Representative histograms showing flow 
cytometric analysis of GFP expression in B cell developmental subsets in ROSA26L1 and 
ROSA26L1/L1 CD2cre bone marrow.  Data are representative of six mice of each genotype. (C) 
Flow cytometric quantification of B cell developmental subsets in Zfp36l1fl/fl Zfp36l2fl/fl (n=6); 
Zfp36l1fl/fl Zfp36l2fl/fl ROSA26+/+ CD2cre (n=5); and Zfp36l1fl/fl Zfp36l2fl/fl ROSA26L1/+ CD2cre 
(n=5) bone marrow demonstrating that the ROSA26L1 transgene can functionally complement 
loss of Zfp36l1 and Zfp36l2 in B cell development.  Data are representative of a single 
experiment. Symbols indicate biological replicates, and bars represent geometric means, 
populations were compared by an ANOVA with Tukey’s post test. (D) Flow cytometric 
quantification of B cell developmental subsets in ROSA26L1/L1 (n=7) and ROSA26L1/L1 CD2cre 

(n=6) bone marrow demonstrating a slight reduction in late pre-B cells, but recovery of 
cellularity by the mature B cell stage in ROSA26L1/L1 CD2cre mice.  Data are representative of 
two experiments. Symbols indicate biological replicates, and bars represent geometric means, 
populations were compared by an ANOVA with Sidak’s post test.   
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Fig. S11: Cell cycle analysis in ROSA26L1/L1 CD2cre pro and pre-B cells. 
(A) Representative dot plots from intracellular flow cytometry measuring BrdU incorporation 
following 2.5 hours labelling in vivo in ROSA26L1/L1 and ROSA26L1/L1 CD2cre pro and pre-B 
cells. (B) Representative dot plots from intracellular flow cytometry measuring p27 in 
ROSA26L1/L1 and ROSA26L1/L1 CD2cre pro and pre-B cells.  Numbers on dot plots indicate the 
percentage of plotted cells in the gates. 
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Fig. S12: Expression of cyclinD3 and cyclinE2 in DCKO and ROSA26L1/L1 mice 
(A, B) Representative flow cytometry dot plots and histograms showing cyclinE2 (A) and 
cyclinD3 (B) expression assayed by flow cytometry in control and DCKO pro- and pre-B cells.   
(C, D) Representative flow cytometry histograms showing cyclinE2 (C) and cyclinD3 (D) 
expression in ROSA26L1/L1 and ROSA26L1/L1 CD2cre pro and pre-B cells. (E) RT-qPCR 
measurements of the abundance of mRNAs proposed to be targets of ZFP36 family RBPs, in 
cDNA from sorted ROSA26L1/L1 (n=6) and ROSA26L1/L1 CD2cre (n=4) late pre-B cells.  
Measurements were normalized to Tbp, Sdha, B2m and Ubc.  Bars represent geometric means.  
Data are representative of two independent experiments. ROSA26L1/L1 and ROSA26L1/L1 CD2cre 

data were compared using student’s t-tests with a Holm-Sidak correction for multiple testing. 
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Fig. S13: Inhibition of CDK4 and CDK6 with palbociclib restores VDJ recombination 
in DCKO pro- and pre-B cells 
(A) Diagram describing detection of recombined IgH loci and excised signal joints by DNA 
FISH. (B) Representative FISH image showing a cell containing two excision circles and two 
V to DJ recombined IgH alleles. (C) Percentage of pro/early pre-B cells containing excision 
circles from control and DCKO following treatment with vehicle control or 150mg/kg 
palbociclib daily for two days. Data are from a single experiment, n=3 for each group. (D) 
Percentage of late pre-B cells containing excision circles from control and DCKO following 
treatment with vehicle control or 150mg/kg palbociclib daily for two days. Data are from a 
single experiment, n=3 for each group. (E) Quantification of late pre-B cells with zero, one, 
or two V to DJ recombined IgH alleles by DNA FISH in control and DCKO mice following 
treatment with vehicle control or 150mg/kg palbociclib daily for two days.  Data are from a 
single experiment, n=3 for each group, bars represent mean values, error bars indicate the 
standard deviation. (F) Abundance of recombined Igκ alleles, measured by qPCR, in the late 
pre-B cells of control and DCKO mice treated with vehicle control or 150mg/kg palbociclib 
daily for four days.  Data are from a single experiment. Individual symbols, where shown, 
represent biological replicates and bars represent mean values. Control and DCKO samples 
were compared using an ANOVA with Tukey’s post test. 
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