19 research outputs found

    Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    Get PDF
    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm

    Graphene FET Gigabit On-Off Keying Demodulator at 96 GHz

    No full text
    We demonstrate the demodulation of a multi-Gb/s ON-OFF keying (OOK) signal on a 96 GHz carrier by utilizing a 250-nm graphene field-effect transistor as a zero bias power detector. From the eye diagram, we can conclude that the devices can demodulate the OOK signals up to 4 Gb/s

    Quasi-Free-Standing Bilayer Graphene Hall-Effect Sensor

    No full text

    A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET

    No full text
    This letter presents the design, fabrication and characterization of the first graphene based monolithic microwave integrated circuit (MMIC) in microstrip technology operating in W-band. The circuit is a resistive mixer in a 250 nm graphene field effect transistor (G-FET) technology on a SiC substrate. A conversion loss of 18 dB is achieved which is limited by the available local oscillator (LO) power. The mixer exhibits a flat response over radio frequency (RF) range of 90-100 GHz. The RF bandwidth is also limited by the measurement setup

    Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures

    No full text
    High-temperature electrical properties of p-type hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene on semi-insulating vanadium-compensated on-axis 6H-SiC(0001) and high-purity on-axis 4H-SiC(0001) originate from the double-carrier system of spontaneous-polarization-induced holes in graphene and thermally-activated electrons in the substrate. In this study, we pre-epitaxially modify SiC by implanting hydrogen (H+) and helium (He+) ions with energies ranging from 20 keV to 50 keV to reconstruct its post-epitaxial defect structure and suppress the thermally-developed electron channel. Through a combination of dark current measurements and High-Resolution Photo-Induced Transient Spectroscopy between 300 K and 700 K, we monitor the impact of ion bombardment on the transport properties of SiC and reveal activation energies of the individual deep-level defects. We find that the ion implantation has a negligible effect on 6H-SiC. Yet in 4H-SiC, it shifts the Fermi level from ∼600 meV to ∼800 meV below the minimum of the conduction band and reduces the electron concentration by two orders of magnitude. Specifically, it eliminates deep electron traps related to silicon vacancies in the charge state (2-/-) occupying the h and k sites of the 4H-SiC lattice. Finally, we directly implement the protocol of deep-level defect engineering in the technology of amorphous-aluminum-oxide-passivated Hall effect sensors and introduce a mature sensory platform with record-linear current-mode sensitivity of approximately 80 V/AT with -0.03-%/K stability in a broad temperature range between 300 K and 770 K, and likely far beyond 770 K

    The Comparison of InSb-Based Thin Films and Graphene on SiC for Magnetic Diagnostics under Extreme Conditions

    No full text
    The ability to precisely measure magnetic fields under extreme operating conditions is becoming increasingly important as a result of the advent of modern diagnostics for future magnetic-confinement fusion devices. These conditions are recognized as strong neutron radiation and high temperatures (up to 350 °C). We report on the first experimental comparison of the impact of neutron radiation on graphene and indium antimonide thin films. For this purpose, a 2D-material-based structure was fabricated in the form of hydrogen-intercalated quasi-free-standing graphene on semi-insulating high-purity on-axis 4H-SiC(0001), passivated with an Al2O3 layer. InSb-based thin films, donor doped to varying degrees, were deposited on a monocrystalline gallium arsenide or a polycrystalline ceramic substrate. The thin films were covered with a SiO2 insulating layer. All samples were exposed to a fast-neutron fluence of ≈7×1017 cm−2. The results have shown that the graphene sheet is only moderately affected by neutron radiation compared to the InSb-based structures. The low structural damage allowed the graphene/SiC system to retain its electrical properties and excellent sensitivity to magnetic fields. However, InSb-based structures proved to have significantly more post-irradiation self-healing capabilities when subject to proper temperature treatment. This property has been tested depending on the doping level and type of the substrate
    corecore