62 research outputs found

    Lithium and proton conducting gel-type membranes

    Get PDF
    We review the characteristics and the properties of various types of gel-type, ionically conducting membranes. We have mainly investigated two classes of membranes, one characterized by lithium ion transport and the other characterized by proton conductivity. We show that the former membranes are suitable to be used as separators in advanced lithium ion plastic batteries and that the latter show good promises to be considered as alternative, new separators in polymer electrolyte fuel cells. © 2003 Elsevier B.V. All rights reserved

    Polyphenol-mediated autophagy in cancer: Evidence of in vitro and in vivo studies

    Get PDF
    One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants

    Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies.

    Get PDF
    One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants

    Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen

    Get PDF
    Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays

    Combined treatment with inhibitors of ErbB Receptors and Hh signaling pathways is more effective than single treatment in reducing the growth of malignant mesothelioma both in vitro and in vivo

    Get PDF
    Malignant mesothelioma (MM) is a rare orphan aggressive neoplasia with low survival rates. Among the other signaling pathways, ErbB receptors and Hh signaling are deregulated in MM. Thus, molecules involved in these signaling pathways could be used for targeted therapy approaches. The aim of this study was to evaluate the effects of inhibitors of Hh- (GANT-61) and ErbB receptors (Afatinib)-mediated signaling pathways, when used alone or in combination, on growth, cell cycle, cell death and autophagy, modulation of molecules involved in transduction pathways, in three human MM cell lines of different histotypes. The efficacy of the combined treatment was also evaluated in a murine epithelioid MM cell line both in vitro and in vivo. This study demonstrated that combined treatment with two inhibitors counteracting the activation of two different signaling pathways involved in neoplastic transformation and progression, such as those activated by ErbB and Hh signaling, is more effective than the single treatments in reducing MM growth in vitro and in vivo. This study may have clinical implications for the development of targeted therapy approaches for MM

    Lithium and proton conducting gel-type membranes

    No full text

    L\u2019Indice di Capacit\ue0 di Lavoro in operatori sanitari.

    No full text
    The Work Ability Index was used as a complementary tool for the periodical health surveillance of health care workers in order to evaluate their functional working capacity and to plan more appropriate preventive and compensatory measures. 867 health care workers of both sexes (337 men, 530 women), aged between 23 to 65 years and with a work experience from 0.5 to 48 years ere examined. They were physicians, registered and assistant nurses, biologists, technicians and clerks, working in hospital departments, ambulatory health care services, laboratories and offices. WAI proved to be "excellent" in 27.0%, "good" in 49.7%, "moderate" in 20.1% and "poor" in 3.2%. Women showed significantly lower mean WAI than men in all age groups, particularly among registered and assistant nurses. Women shift workers showed a more pronounced decrease of WAI over the years as compared to their colleagues day workers by increasing the number of illnesses suffered, WAI similarly decreased in all age groups, but less among physicians and clerks

    Lithium and proton conducting gel-type membranes

    No full text
    We review the characteristics and the properties of various types of gel-type, ionically conducting membranes. We have mainly investigated two classes of membranes, one characterized by lithium ion transport and the other characterized by proton conductivity. We show that the former membranes are suitable to be used as separators in advanced lithium ion plastic batteries and that the latter show good promises to be considered as alternative, new separators in polymer electrolyte fuel cells. © 2003 Elsevier B.V. All rights reserved
    corecore