24 research outputs found

    Downregulation of miR-342 is associated with tamoxifen resistant breast tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor resistance to the selective estrogen receptor modulator tamoxifen remains a serious clinical problem especially in patients with tumors that also overexpress HER2. We have recently demonstrated that the clinically important isoform of HER2, HERΔ16, promotes therapeutically refractory breast cancer including resistance to endocrine therapy. Likewise additional breast tumor cell models of tamoxifen resistance have been developed that do not involve HER2 overexpression. However, a unifying molecular mechanism of tamoxifen resistance has remained elusive.</p> <p>Results</p> <p>Here we analyzed multiple cell models of tamoxifen resistance derived from MCF-7 cells to examine the influence of microRNAs (miRNAs) on tamoxifen resistance. We compared miRNA expression profiles of tamoxifen sensitive MCF-7 cells and tamoxifen resistant MCF-7/HER2Δ16 cells. We observed significant and dramatic downregulation of miR-342 in the MCF-7/HER2Δ16 cell line as well as the HER2 negative but tamoxifen resistant MCF-7 variants TAMR1 and LCC2. Restoring miR-342 expression in the MCF-7/HER2Δ16 and TAMR1 cell lines sensitized these cells to tamoxifen-induced apoptosis with a dramatic reduction in cell growth. Expression of miR-342 was also reduced in a panel of tamoxifen refractory human breast tumors, underscoring the potential clinical importance of miR-342 downregulation. Towards the goal of identifying direct and indirect targets of miR-342 we restored miR-342 expression in MCF-7/HER2Δ16 cells and analyzed changes in global gene expression by microarray. The impact of miR-342 on gene expression in MCF-7/HER2Δ16 cells was not limited to miR-342 <it>in silica </it>predicted targets. Ingenuity Pathways Analysis of the dataset revealed a significant influence of miR-342 on multiple tumor cell cycle regulators.</p> <p>Conclusions</p> <p>Our findings suggest that miR-342 regulates tamoxifen response in breast tumor cell lines and our clinical data indicates a trend towards reduced miR-342 expression and tamoxifen resistance. In addition, our results suggest that miR-342 regulates expression of genes involved in tamoxifen mediated tumor cell apoptosis and cell cycle progression. Restoring miR-342 expression may represent a novel therapeutic approach to sensitizing and suppressing the growth of tamoxifen refractory breast tumors.</p

    Ovarian steroid hormones: what's hot in the stem cell pool?

    Get PDF
    The vital role of ovarian hormones in the development of the normal breast foreshadowed their importance in mammary stem cell regulation. Two recent papers reveal that 17β-estradiol and progesterone control the size and repopulating ability of the mammary stem cell compartment. This likely occurs via paracrine signaling from steroid receptor-positive luminal cells to steroid receptor-negative stem cells. These findings illuminate roles for the female sex steroids in mobilizing the stem cell pool in the normal breast, and also provide a crucial link between the known hormonal risks of breast cancer and the potential stem cell origin of this disease

    Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide

    Get PDF
    INTRODUCTION: The androgen receptor (AR) is widely expressed in breast cancers and has been proposed as a therapeutic target in estrogen receptor alpha (ER) negative breast cancers that retain AR. However, controversy exists regarding the role of AR, particularly in ER + tumors. Enzalutamide, an AR inhibitor that impairs nuclear localization of AR, was used to elucidate the role of AR in preclinical models of ER positive and negative breast cancer. METHODS: We examined nuclear AR to ER protein ratios in primary breast cancers in relation to response to endocrine therapy. The effects of AR inhibition with enzalutamide were examined in vitro and in preclinical models of ER positive and negative breast cancer that express AR. RESULTS: In a cohort of 192 women with ER + breast cancers, a high ratio of AR:ER (≥2.0) indicated an over four fold increased risk for failure while on tamoxifen (HR = 4.43). The AR:ER ratio had an independent effect on risk for failure above ER % staining alone. AR:ER ratio is also an independent predictor of disease-free survival (HR = 4.04, 95% CI: 1.68, 9.69; p = 0.002) and disease specific survival (HR = 2.75, 95% CI: 1.11, 6.86; p = 0.03). Both enzalutamide and bicalutamide inhibited 5-alpha-dihydrotestosterone (DHT)-mediated proliferation of breast cancer lines in vitro; however, enzalutamide uniquely inhibited estradiol (E2)-mediated proliferation of ER+/AR + breast cancer cells. In MCF7 xenografts (ER+/AR+) enzalutamide inhibited E2-driven tumor growth as effectively as tamoxifen by decreasing proliferation. Enzalutamide also inhibited DHT- driven tumor growth in both ER positive (MCF7) and negative (MDA-MB-453) xenografts, but did so by increasing apoptosis. CONCLUSIONS: AR to ER ratio may influence breast cancer response to traditional endocrine therapy. Enzalutamide elicits different effects on E2-mediated breast cancer cell proliferation than bicalutamide. This preclinical study supports the initiation of clinical studies evaluating enzalutamide for treatment of AR(+) tumors regardless of ER status, since it blocks both androgen- and estrogen- mediated tumor growth

    Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors

    Get PDF
    Tamoxifen is the most commonly prescribed therapy for patients with estrogen receptor (ER)α-positive breast tumors. Tumor resistance to tamoxifen remains a serious clinical problem especially in patients with tumors that also overexpress human epidermal growth factor receptor 2 (HER2). Current preclinical models of HER2 overexpression fail to recapitulate the clinical spectrum of endocrine resistance associated with HER2/ER-positive tumors. Here, we show that ectopic expression of a clinically important oncogenic isoform of HER2, HER2Δ16, which is expressed in >30% of ER-positive breast tumors, promotes tamoxifen resistance and estrogen independence of MCF-7 xenografts. MCF-7/HER2Δ16 cells evade tamoxifen through upregulation of BCL-2, whereas mediated suppression of BCL-2 expression or treatment of MCF-7/HER2Δ16 cells with the BCL-2 family pharmacological inhibitor ABT-737 restores tamoxifen sensitivity. Tamoxifen-resistant MCF-7/HER2Δ16 cells upregulate BCL-2 protein levels in response to suppressed ERα signaling mediated by estrogen withdrawal, tamoxifen treatment or fulvestrant treatment. In addition, HER2Δ16 expression results in suppression of BCL-2-targeting microRNAs miR-15a and miR-16. Reintroduction of miR-15a/16 reduced tamoxifen-induced BCL-2 expression and sensitized MCF-7/HER2Δ16 to tamoxifen. Conversely, inhibition of miR-15a/16 in tamoxifen-sensitive cells activated BCL-2 expression and promoted tamoxifen resistance. Our results suggest that HER2Δ16 expression promotes endocrine-resistant HER2/ERα-positive breast tumors and in contrast to wild-type HER2, preclinical models of HER2Δ16 overexpression recapitulate multiple phenotypes of endocrine-resistant human breast tumors. The mechanism of HER2Δ16 therapeutic evasion, involving tamoxifen-induced upregulation of BCL-2 and suppression of miR-15a/16, provides a template for unique therapeutic interventions combining tamoxifen with modulation of microRNAs and/or ABT-737-mediated BCL-2 inhibition and apoptosis

    Phosphorylation of Bcl-xL after spinal cord injury

    No full text
    Spinal cord injury (SCI)-induced functional impairment results from secondary apoptosis regulated in part by SCI-induced decreases in the antiapoptotic protein Bcl-x(L). We assessed the role that Bcl-x(L) subcellular rerouting and posttranslational phosphorylation play in Bcl-x(L) decreases in a contusion model of rat SCI. Immunohistochemical analysis showed the presence of Bcl-x(L) in neurons and oligodendrocytes, but not in astrocytes and microglia, whereas phosphorylated Bcl-x(L) (P-ser(62)-Bcl-x(L)) was present only in neurons. Western blot analyses showed Bcl-x(L) present in mitochondria, endoplasmic reticulum, nuclei, and cytosolic extracts, whereas P-ser(62)-Bcl-x(L) was restricted to organelles. During the first 24 hr after SCI, Bcl-x(L) levels decreased in all fractions but with a different time course, suggesting an independent regulation of Bcl-x(L) shuttling from the cytosol to each compartment after SCI. SCI did not affect P-ser(62)-Bcl-x(L) levels in organelles. However, P-ser(62)-Bcl-x(L), which was not detected in the cytosolic fraction of uninjured spinal cord, appeared in the cytosol as early as 15 min postcontusion, suggesting a role for phosphorylation in SCI-induced Bcl-x(L)-decreases. Using an in vitro model, we observed a correlation between levels of cytosolic phosphorylated Bcl-x(L) and neuronal apoptosis, supporting the hypothesis that Bcl-x(L) phosphorylation is proapoptotic. Activated microglia/macrophages robustly expressed Bcl-x(L) 7 days after SCI, and a subpopulation showing nuclear condensation also expressed P-ser(62)-Bcl-x(L). Therefore, phosphorylation of Bcl-x(L) may have opposite effects in injured spinal cords: 1) it may decrease levels of the antiapoptotic Bcl-x(L) in neurons contributing to neuronal death, and 2) it may promote apoptosis in activated microglia/macrophages, thus curtailing the inflammatory cascades associated with SCI

    miR-200c Targets a NF-κB Up-Regulated TrkB/NTF3 Autocrine Signaling Loop to Enhance Anoikis Sensitivity in Triple Negative Breast Cancer

    Get PDF
    <div><p>Anoikis is apoptosis initiated upon cell detachment from the native extracellular matrix. Since survival upon detachment from basement membrane is required for metastasis, the ability to resist anoikis contributes to the metastatic potential of breast tumors. miR-200c, a potent repressor of epithelial to mesenchymal transition, is expressed in luminal breast cancers, but is lost in more aggressive basal-like, or triple negative breast cancers (TNBC). We previously demonstrated that miR-200c restores anoikis sensitivity to TNBC cells by directly targeting the neurotrophic receptor tyrosine kinase, TrkB. In this study, we identify a TrkB ligand, neurotrophin 3 (NTF3), as capable of activating TrkB to induce anoikis resistance, and show that NTF3 is also a direct target of miR-200c. We present the first evidence that anoikis resistant TNBC cells up-regulate both TrkB and NTF3 when suspended, and show that this up-regulation is necessary for survival in suspension. We further demonstrate that NF-κB activity increases 6 fold in suspended TNBC cells, and identify RelA and NF-κB1 as the transcription factors responsible for suspension-induced up-regulation of TrkB and NTF3. Consequently, inhibition of NF-κB activity represses anoikis resistance. Taken together, our findings define a critical mechanism for transcriptional and post-transcriptional control of suspension-induced up-regulation of TrkB and NTF3 in anoikis resistant breast cancer cells.</p> </div

    TrkB and NTF3 are up-regulated in suspended cells and miR-200c blocks this up-regulation.

    No full text
    <p>Cells were plated in suspension and harvested at the time points indicated. <b>A.</b> Immunoblot for TrkB expression, α-tubulin used as loading control. <b>B.</b> NTF3 ELISA performed on medium. <i>Points,</i> mean of three biological replicates, <i>bars</i>, SEM. Cells treated with transfection reagent only (mock), scrambled negative control (neg) or miR-200c mimic (200c) and 24 hrs later plated in suspension. <b>C.</b> Cells were harvested 24 hrs later and immunoblot performed for TrkB, α-tubulin used as loading control. <b>D.</b> NTF3 ELISA performed on medium at time points indicated. <i>Points,</i> mean of three biological replicates, <i>bars</i>, SEM.</p

    Triple negative breast cancer cells are more anoikis resistant than luminal cells and miR-200c sensitizes aggressive cells to anoikis.

    No full text
    <p><b>A.</b> Cells were plated attached or suspended for 24 hrs prior to staining with DAPI and propidium iodide (PI). Representative images of suspended cells are shown, scale bar 50 µm. Quantitation of data in A, presented as a ratio of PI to DAPI, with each cell line normalized to the attached condition. Shown relative to MDA-231 cell line. <i>Columns</i>, mean of three biological replicates, <i>bars</i>, SEM. <b>B.</b> Cells treated with transfection reagent only (mock), scrambled negative control (neg) or miR-200c mimic (200c) and 48 hrs later harvested for qRT-PCR analysis of miR-200c levels. Data normalized to U6 levels and presented relative to MDA-231 mock transfection condition. <i>Columns,</i> mean of five biological replicates, <i>bars,</i> SEM. <b>C.</b> Cells as in B and 24 hrs later plated in suspension. After 24 hrs in suspension, a cell death ELISA was performed. Data normalized to attached condition and shown relative to MDA-231 mock transfection. <i>Columns</i>, mean of three biological replicates, <i>bars</i>, SEM.</p
    corecore