14 research outputs found

    Phylogeography and resistome of pneumococcal meningitis in West Africa before and after vaccine introduction

    Get PDF
    Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact

    Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions

    No full text
    At the kilo- to megabase pair scales, eukaryotic genomes are partitioned into self-interacting modules or topologically associated domains (TADs) that associate to form nuclear compartments. Here, we combine high-content super-resolution microscopies with state-of-the-art DNA-labeling methods to reveal the variability in the multiscale organization of the Drosophila genome. We find that association frequencies within TADs and between TAD borders are below ~10%, independently of TAD size, epigenetic state, or cell type. Critically, despite this large heterogeneity, we are able to visualize nanometer-sized epigenetic domains at the single-cell level. In addition, absolute contact frequencies within and between TADs are to a large extent defined by genomic distance, higher-order chromosome architecture, and epigenetic identity. We propose that TADs and compartments are organized by multiple, small-frequency, yet specific interactions that are regulated by epigenetics and transcriptional state.This research was supported by funding from the European Research Council under the 7th Framework Program (FP7/2010-2015, ERC grant agreement 260787 to M.N. and FP7/2007-2013, and ERC grant agreement 609989 to M.A.M.-R.). M.A.M.-R. and G.C. acknowledge support from the European Union's Horizon 2020 research and innovation program under grant agreement 676556. This work has also benefited from support by the Labex EpiGenMed, an «Investments for the future» program, reference ANR-10-LABX-12-01, the Spanish Ministry of Economy and Competitiveness (BFU2013-47736-P to M.A.M.-R.), and from “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208 to the CRG. 3D-SIM experiments were performed at Montpellier Resource Imaging. We acknowledge the France-BioImaging infrastructure supported by the French National Research Agency (ANR-10-INBS-04, «Investments for the future»)

    Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo.

    Get PDF
    Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a (-/-) mice. We found that Bcl11a was required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a (-/-) fetal livers and in the bone marrow of Bcl11a (-/-) fetal liver chimeras. Moreover, Bcl11a (-/-) cells showed severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a (-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a (-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo
    corecore