3 research outputs found

    Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water

    Get PDF
    The corrosion behavior of 304L grade stainless steel (SS) in high-temperature steam and in a simulated Pressurized Water Reactor (PWR) is studied. The goal was to characterize the nature of the oxide coating generated during 500 h exposure of samples in a 400 °C steam (200 bar) or a 340 °C simulated PWR. Accelerating the effect of the steam environment as well as the influence of surface preparation have been studied. Two initial sample surfaces were used: mechanical polishing and finishing grinding. Oxide coatings were investigated using TEM imaging coupled with EELS spectroscopy and R – SIMS (Secondary Ion Mass Spectroscopy)

    Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    Get PDF
    International audienceThe sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δεp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown
    corecore