25 research outputs found
Effects Of Body Position And Sex Group On Tongue Pressure Generation
Fine control of orofacial musculature is necessary to precisely accelerate and decelerate the articulators across exact distances for functional speech and coordinated swallows (Amerman & Parnell, 1990; Benjamin, 1997; Kent, Duffy, Slama, Kent, & Clift, 2001). Enhanced understanding of neural control for such movements could clarify the nature of and potential remediation for some dysarthrias and other orofacial myofunctional impairments. Numerous studies have measured orolingual force and accuracy during speech and nonspeech tasks, but have focused on young adults, maximum linguapalatal pressures, and upright positioning (O’Day, Frank, Montgomery, Nichols, & McDade, 2005; Solomon & Munson, 2004; Somodi, Robin, & Luschei, 1995; Youmans, Youmans, & Stierwalt, 2009). Patients’ medical conditions or testing procedures such as concurrent neuroimaging may preclude fully upright positioning during oral motor assessments in some cases. Since judgments about lingual strength and coordination can influence clinical decisions regarding the functionality of swallowing and speech, it is imperative to understand any effects of body positioning differences. In addition, sex differences in the control of such tasks are not well defined. Therefore, this study evaluated whether pressures exerted during tongue movements differ in upright vs. supine body position in healthy middle-aged men and women.
Twenty healthy middle-aged adults compressed small air-filled plastic bulbs in the oral cavity at predetermined fractions of task-specific peak pressure in a randomized block design. Tasks including phoneme repetitions and nonspeech isometric contractions were executed in upright and supine positions. Participants received continuous visual feedback regarding targets and actual exerted pressures. Analyses compared average pressure values for each subject, task, position, and effort level. Speech-like and nonspeech tongue pressures did not differ significantly across body position or sex groups. Pressure matching was significantly less accurate at higher percentages of maximum pressure for both tasks. These results provide preliminary comparative data for the clinical assessment of individuals with orofacial myofunctional and neurological disorders
Primary somatosensory cortex in chronic low back pain – a 1H-MRS study
The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC), are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP). Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and glutamine/glutamate (Glx) were measured with proton magnetic resonance spectroscopy (1H-MRS) in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001) and decreased Cho (P = 0.04) along with lower correlations between all metabolites in right SSC (P = 0.007) in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls) and between left mI and right Cho (P = 0.048 vs P = 0.6). Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively) while right Glx was positively correlated with pain severity (P = 0.04). Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration and right neuronal-glial alterations to pain severity. Thus, the 1H-MRS approach proposed here can be used to quantify relevant cerebral metabolite changes in chronic pain, and consequently increase our knowledge of the factors leading from these changes to clinical outcomes
Cervical arthroplasty versus anterior cervical decompression and fusion
Background: Anterior cervical decompression and fusion (ACDF) is a common procedure in neurosurgical practice to manage the cervical cord/nerve roots compression by intervertebral disk herniation / osteophytic formation. However, cervical total disk replacement (TDR) progressively became a feasible alternative to ACDF in surgical practice. This procedure is thought to have many advantages compared to classical ACDF. The aim of the present study is to investigate if TDR is superior as outcome measures than ACDF, by reviewing the published data available to date.Methods: We searched several electronic databases up to December 2010. Outcomes sought includes pain relief, functional capacity, quality of life, adjacent disk disease, secondary surgeries, kinematics/range of motion, return to work, adverse events, potential candidacy rate for surgery. We selected mainly randomized controlled trials.Results: Compared to ACDF, TDR has superior or equal clinical outcomes, a lower incidence of adjacent disc disease (radiological +/- clinical), lower rate of secondary revision surgeries, supplemental fixation or adjacent segment reoperation, superior spine kinematics, which is maintained over time, earlier return to work. On the other hand, the presented studies have shown that TDR exposes the patients to more frequent postoperative events and have an inferior candidacy rate compared to ACDF. We did not have access to straight –forward economic data, but TDR seems to be more costly than ACDF.Conclusions: TDR already represents a well-established technique in the armamentarium to manage the cervical disc herniation, a method required to be handled by any surgeon involved in spinal care
Intramedullary tumors: Clinical, radiological and histological correlations
Intramedullary spinal cord (SC) tumors are relatively rare tumors, accounting for only 2% to 4% ofcentral nervous systemtumors.These tumorsaregenerallyslow-growing tumorsthatcouldbenefitfromsurgical removal. A pre-surgery identification of the tumor histology might improve the surgical management of the tumor and also properly predict the functional outcome after surgery. The neuroimaging techniques, provide crucial information about tumors anatomy. By adding the medical history of the present illness and detailed clinical examination, the imaging data might however be extremely helpful in the prediction of tumor histology. This will allow anappropriate surgical managementofthese lesions and provide pertinent predictors of the functional outcome post-surgery. Therefore, the surgeon can set the patient’s expectations at a realistic level.The present studyis a prospective study,aiming to use combined clinical and imaging data to predictthe intramedullary SC tumor histology. The primary objectiveis to identify the pathognomonic clinical and imaging pattern for eachtumor type.The study was conducted in the Neurosurgery Clinic Emergency Clinic Hospital Bagdasar-Arseni between 2006 and 2009. A total of 36 patients (19 females/17 males) participated. All patients were evaluated for motor, sensory, sphincter, walking and balance functions. MRI assessment was used to determine the presence of an intramedullary SC tumor as well as its characteristics.All histological types have a long history of symptoms, which depends of locations in longitudinal plane. All intramedullary tumors presented spinal cord dilatation on MRI. We confined the clinico-radiological characteristics of each histological type, strongly correlated with histopathological analysis, extensively presented in the paper. By combining a careful medical history, clinical examination and MRI data, we could predict with a reasonable accuracy in preoperative stage the histological type of an intramedullary tumor. 
Longitudinal volumetric MRI study of pituitary gland following severe traumatic brain injury
Abstract Purpose: Previous studies have suggested that the hypopituitarism following traumatic brain injury (TBI) is more prevalent than traditionally thought. Conclusion: Following a severe TBI, early pituitary enlargement found in most of our patients persisted in the chronic phases. Our data suggest a potential role of MRI morphometry in early prediction of pituitary dysfunction following head trauma, but further studies including hormonal measurements are necessary for validation
Longitudinal volumetric MRI study of pituitary gland following severe traumatic brain injury
Purpose: Previous studies have suggested that the hypopituitarism following traumatic brain injury (TBI) is more prevalent than traditionally thought. The objective of this study was to characterize longitudinal MRI morphometric changes of pituitary gland in patients with severe TBI.Materials and methods: Fourteen patients who had suffered a severe TBI (Glasgow Coma Score=3 - 8) underwent MRI at three time points: Time 1 (mean=31. 5 days), Time 2 (98. 0) and Time 3 (185. 5). The pituitary gland volume was quantified by manually tracing on T1-weighted magnetic resonance images. Data from TBI patients were compared to 14 age- and sex-matched uninjured controls. The relationships between pituitary volumetric measures and patient demographics, length of respiratory support and coma, and presence of intracranial hemorrhage or skull fractures were also analyzed.Results: Following TBI, the pituitary volumes were significantly greater at all three time points: Time 1: median=665mm3, range=460-830mm3, p=0. 007; Time 2: 694mm3, 467-866mm3, 0. 007; and Time 3: 655mm3, 444-795mm3, 0. 015, compared with controls (504mm3, 433-591mm3). At Time 1, pituitary volume was increased in 10 out of 14 patients. Of these, early pituitary enlargements persisted up to six months in nine patients. Pituitary enlargements were negatively correlated with GCS, but not with other variables.Conclusion: Following a severe TBI, early pituitary enlargement found in most of our patients persisted in the chronic phases. Our data suggest a potential role of MRI morphometry in early prediction of pituitary dysfunction following head trauma, but further studies including hormonal measurements are necessary for validation
Changes in primary somatosensory cortex following allogeneic hand transplantation or autogenic hand replantation
Former amputees who undergo allogeneic hand transplantation or autogenic hand replantation (jointly, “hand restoration”) present a unique opportunity to measure the range of post-deafferentation plastic changes in the nervous system, especially primary somatosensory cortex (S1). However, few such patients exist, and previous studies compared single cases to small groups of typical adults. Here, we studied 5 individuals (n = 8 sessions: a transplant with 2 sessions, a transplant with 3 sessions, and three replants with 1 session each). We used functional magnetic resonance imaging (fMRI) to measure S1 responsiveness to controlled pneumatic tactile stimulation delivered to each patient's left and right fingertips and lower face. These data were compared with responses acquired from typical adults (n = 29) and current unilateral amputees (n = 19). During stimulation of the affected hand, patients' affected S1 (contralateral to affected hand) responded to stimulation in a manner similar both to amputees and to typical adults. The presence of contralateral responses indicated grossly typical S1 function, but responses were universally at the low end of the range of typical variability. Patients' affected S1 showed substantial individual variability in responses to stimulation of the intact hand: while all patients fell within the range of typical adults, some patient sessions (4/8) had substantial ipsilateral responses similar to those exhibited by current amputees. Unlike hand restoration patients, current amputees exhibited substantial S1 reorganization compared to typical adults, including bilateral S1 responses to stimulation of the intact hand. In all three participant groups, we assessed tactile localization by measuring individuals' ability to identify the location of touch on the palm and fingers. Curiously, while transplant patients improved their tactile sensory localization over time, this was uncorrelated with changes in S1 responses to tactile stimuli. Overall, our results provide the first description of cortical responses to well-controlled tactile stimulation after hand restoration. Our case studies indicate that hand restoration patients show S1 function within the range of both typical adults and amputees, but with low-amplitude and individual-specific responses that indicate a wide range of potential cortical neurological changes following de-afferentation and re-afferentation
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial
Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme