390 research outputs found

    Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms

    Full text link
    The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.Comment: 17 pages, 1 figure, sub. to Phys. Rev.

    Quantum mechanics of a free particle on a pointed plane revisited

    Full text link
    The detailed study of a quantum free particle on a pointed plane is performed. It is shown that there is no problem with a mysterious ``quantum anticentrifugal force" acting on a free particle on a plane discussed in a very recent paper: M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002), but we deal with a purely topological efect related to distinguishing a point on a plane. The new results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions.Comment: 4 figure

    The Localization of ss-Wave and Quantum Effective Potential of a Quasi-Free Particle with Position-Dependent Mass

    Full text link
    The properties of the s-wave for a quasi-free particle with position-dependent mass(PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in DD dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.Comment: 12pages, 8 figure

    Quantum anti-centrifugal force

    Full text link
    In a two-dimensional world a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anti-centrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional delta function potential. In a counter-intuitive way the attractive force pushes the particle away from the location of the delta function potential. As a consequence, the particle is localized in a band-shaped domain around the originComment: 8 pages, including three eps figures, submitted to Phys. Rev. A. Figures substitute

    Analytical solutions for two heteronuclear atoms in a ring trap

    Full text link
    We consider two heteronuclear atoms interacting with a short-range δ\delta potential and confined in a ring trap. By taking the Bethe-ansatz-type wavefunction and considering the periodic boundary condition properly, we derive analytical solutions for the heteronuclear system. The eigen-energies represented in terms of quasi-momentums can then be determined by solving a set of coupled equations. We present a number of results, which display different features from the case of identical atoms. Our result can be reduced to the well-known Lieb-Liniger solution when two interacting atoms have the same masses.Comment: 6 pages, 6 figure

    Dynamics of entanglement between two trapped atoms

    Get PDF
    We investigate the dynamics of entanglement between two continuous variable quantum systems. The model system consists of two atoms in a harmonic trap which are interacting by a simplified s-wave scattering. We show, that the dynamically created entanglement changes in a steplike manner. Moreover, we introduce local operators which allow us to violate a Bell-CHSH inequality adapted to the continuous variable case. The correlations show nonclassical behavior and almost reach the maximal quantum mechanical value. This is interesting since the states prepared by this interaction are very different from any EPR-like state.Comment: 9 page

    Motional effects of single trapped atomic/ionic qubit

    Get PDF
    We investigate theoretical decoherence effects of the motional degrees of freedom of a single trapped atomic/ionic electronically coded qubit. For single bit rotations from a resonant running wave laser field excitation, we found the achievable fidelity to be determined by a single parameter characterized by the motional states. Our quantitative results provide a useful realistic view for current experimental efforts in quantum information and computing.Comment: 3 fig

    Frozen and Invariant Quantum Discord under Local Dephasing Noise

    Full text link
    In this chapter, we intend to explore and review some remarkable dynamical properties of quantum discord under various different open quantum system models. Specifically, our discussion will include several concepts connected to the phenomena of time invariant and frozen quantum discord. Furthermore, we will elaborate on the relation of these two phenomena to the non-Markovian features of the open system dynamics and to the usage of dynamical decoupling protocols.Comment: 29 pages, 8 figure

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles
    corecore